首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A three-dimensional model of moist convection for the giant planets II: Saturn's water and ammonia moist convective storms
Authors:Ricardo Hueso  Agustín Sánchez-Lavega
Institution:Dto. Física Aplicada I, E.T.S. Ingenieros, Universidad País Vasco, Alda. Urquijo s/n. 48013 Bilbao, Spain
Abstract:Moist convective storms constitute a key aspect in the global energy budget of the atmospheres of the giant planets. Among them, Saturn is known to develop the largest scale convective storms in the Solar System, the Great White Spots (GWS) which occur rarely and have been detected once every 30 years approximately. On the average, Saturn seems to show much less convective storms than Jupiter with smaller size and reduced frequency and intensity. Here we present detailed simulations of the onset and development of storms at the Equator and mid-latitudes of Saturn. These are the regions where most of the recent convective activity of the planet has been observed. We use a 3D anelastic model with parameterized microphysics (Hueso and Sánchez-Lavega, 2001, Icarus 151, 257) studying the onset and evolution of water and ammonia moist convective storms up to sizes of a few hundred km. Water storms, while more difficult to initiate than in Jupiter, can be very energetic, arriving to the 150 mbar level and developing vertical velocities on the order of 150 m s−1. Ammonia storms develop easier but with a much smaller intensity unless very large abundances of ammonia (10 times solar) are present in Saturn's atmosphere. The Coriolis forces play a major role in the morphology and properties of water based storms.
Keywords:Atmospheres  dynamics  Saturn  atmosphere  Meteorology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号