首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical modeling of ionian volcanic plumes with entrained particulates
Authors:J Zhang  DB Goldstein  PL Varghese  L Trafton  C Moore  K Miki
Institution:Department of Aerospace Engineering, The University of Texas at Austin, 1 University Station, C0600, Austin, TX 78712-0235, USA
Abstract:Volcanic plumes on Jupiter's moon Io are modeled using the direct simulation Monte Carlo (DSMC) method. The modeled volcanic vent is interpreted as a “virtual” vent. A parametric study of the “virtual” vent gas temperature and velocity is performed to constrain the gas properties at the vent by observables, particularly the plume height and the surrounding condensate deposition ring radius. Also, the flow of refractory nano-size particulates entrained in the gas is modeled with “overlay” techniques which assume that the background gas flow is not altered by the particulates. The column density along the tangential line-of-sight and the shadow cast by the plume are calculated and compared with Voyager and Galileo images. The parametric study indicates that it is possible to obtain a unique solution for the vent temperature and velocity for a large plume like Pele. However, for a small Prometheus-type plume, several different possible combinations of vent temperature and velocity result in both the same shock height and peak deposition ring radius. Pele and Prometheus plume particulates are examined in detail. Encouraging matches with observations are obtained for each plume by varying both the gas and particle parameters. The calculated tangential gas column density of Pele agrees with that obtained from HST observations. An upper limit on the size of particles that track the gas flow well is found to be ∼10 nm, consistent with Voyager observations of Loki. While it is certainly possible for the plumes to contain refractory dust or pyroclastic particles, especially in the vent vicinity, we find that the conditions are favorable for SO2 condensation into particles away from the vent vicinity for Prometheus. The shadow cast by Prometheus as seen in Galileo images is also reproduced by our simulation. A time averaged frost deposition profile is calculated for Prometheus in an effort to explain the multiple ring structure observed around the source region. However, this multiple ring structure may be better explained by the calculated deposition of entrained particles. The possibility of forming a dust cloud on Io is examined and, based on a lack of any such observed clouds, a subsolar frost temperature of less than 118 K is suggested.
Keywords:Satellites of Jupiter  Io  Atmospheres  dynamics  Volcanism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号