首页 | 本学科首页   官方微博 | 高级检索  
     


A non-linear theory of vertical resonances in accretion discs
Authors:G. I.Ogilvie
Affiliation:Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA
Abstract:An important and widely neglected aspect of the interaction between an accretion disc and a massive companion with a coplanar orbit is the vertical component of the tidal force. As shown by Lubow, the response of the disc to vertical forcing is resonant at certain radii, at which a localized torque is exerted, and from which a compressive wave (p mode) may be emitted. Although these vertical resonances are weaker than the corresponding Lindblad resonances, the   m =2  inner vertical resonance in a binary star is typically located within the tidal truncation radius of a circumstellar disc.
In this paper I develop a general theory of vertical resonances, allowing for non-linearity of the response, and dissipation by radiative damping and turbulent viscosity. The problem is reduced to a universal, non-linear ordinary differential equation with two real parameters. Solutions of the complex non-linear Airy equation are presented to illustrate the non-linear saturation of the resonance and the effects of dissipation. It is argued that the   m =2  inner vertical resonance is unlikely to truncate the disc in cataclysmic variable stars, but contributes to angular momentum transport and produces a potentially observable non-axisymmetric structure.
Keywords:accretion, accretion discs    hydrodynamics    waves    celestial mechanics    binaries: close
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号