首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analytical power series solutions to the two-dimensional advection–dispersion equation with distance-dependent dispersivities
Authors:Jui-Sheng Chen  Chuen-Fa Ni  Ching-Ping Liang
Institution:1. Graduate Institute of Applied Geology, National Central University, Taoyuan 320, Taiwan, ROC;2. Department of Environmental Engineering and Science, Fooyin University, Kaohsiung 831, Taiwan, ROC
Abstract:As is frequently cited, dispersivity increases with solute travel distance in the subsurface. This behaviour has been attributed to the inherent spatial variation of the pore water velocity in geological porous media. Analytically solving the advection–dispersion equation with distance-dependent dispersivity is extremely difficult because the governing equation coefficients are dependent upon the distance variable. This study presents an analytical technique to solve a two-dimensional (2D) advection–dispersion equation with linear distance-dependent longitudinal and transverse dispersivities for describing solute transport in a uniform flow field. The analytical approach is developed by applying the extended power series method coupled with the Laplace and finite Fourier cosine transforms. The developed solution is then compared to the corresponding numerical solution to assess its accuracy and robustness. The results demonstrate that the breakthrough curves at different spatial locations obtained from the power series solution show good agreement with those obtained from the numerical solution. However, owing to the limited numerical operation for large values of the power series functions, the developed analytical solution can only be numerically evaluated when the values of longitudinal dispersivity/distance ratio eL exceed 0·075. Moreover, breakthrough curves obtained from the distance-dependent solution are compared with those from the constant dispersivity solution to investigate the relationship between the transport parameters. Our numerical experiments demonstrate that a previously derived relationship is invalid for large eL values. The analytical power series solution derived in this study is efficient and can be a useful tool for future studies in the field of 2D and distance-dependent dispersive transport. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:advection-dispersion equation  distance-dependent dispersivity  constant dispersivity solution  Laplace transform  finite Fourier cosine transform  power series solution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号