首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tidal-friction theory of the Earth-Moon system
Authors:R A Lyttleton
Institution:(1) St John's College, Cambridge, England;(2) Jet Propulsion Laboratory, Pasadena, California, U.S.A.
Abstract:The standard discussion of tidal friction in the Earth-Moon system has been that given by Jeffreys in successive editions ofThe Earth over the past several decades. It is herein shown to contain several erros vitiating its results. The dynamical equation utilised for finding the rate of change of angular velocity of the Earth fails to take account of the fact that the moment of inertia of the Earth may be changing with time, and all subsequent equations which depend on this are incorrect as a result. Simple equations have been left unsolved that ought to have been solved, and the alleged numerical conclusions in no way follow from the values set down initially for the observed apparent secular accelerations of the Moon and Sun.The revised dynamical equations are shown to enable the lunar and solar tidal couples to conform to theory, and may imply that the moment of inertia of the Earth is decreasing at a non-negligible rate. Recognition of this is the key to the whole problem. The only available hypothesis providing adequate contraction is that following from the phase-change theory of the nature of the terrestrial core, and the value of the rate of decrease of moment of inertia calculated from this is in close agreement with that implied by modern improved values of the secular accelerations.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号