首页 | 本学科首页   官方微博 | 高级检索  
     检索      


TRANSIENTS AND FIELD BEHAVIOUR IN INDUCED POLARIZATION*
Authors:J BERTIN  J LOEB
Abstract:This paper deals with electromagnetic fields in the so called “Transient Induced Polarization Technique”. Field equations are integrated in the case of a polarizable sphere inbedded in a sterile overburden. The existence of a remanent polarization vector P which slowly decays once the charging current has been cut off is taken as the initial condition. When the surface between the air and overburden is (as a first step) disregarded, the Laplace transform of the EM fields is given. The integral of the electric field (which is fairly often the result of prospection work) is independent of the various time constants related to electrochemical processes, but it stands as a good measurement of the total electrostatic dipole created by the charging current. We investigate the geometrical circumstances that can bring negative values of I.P. signal. Such negative values can be found in two cases: 1. The discharge currents are. distorted by the ground surface. 2. The I.P. signal is picked up by electrodes inside the polarizable material. The last part is dedicated to an account of experimental work performed on models and of an actual case history. The mathematical derivations are included in an appendix.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号