首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The isotopic composition and origins of silicon nitride from ordinary and enstatite chondrites
Authors:S S Russell  M R Lee  J W Arden  C T Pillinger
Abstract:Abstract— The N-isotopic composition of acid-resistant residues of three low petrologic type ordinary chondrites (Adrar 003, LL3.2; Inman, L3.4; Tieschitz, H3.6) and an enstatite chondrite (Indarch, EH4) have been measured by static mass spectrometry. All of these samples have been shown by transmission electron microscopy (TEM) to contain silicon nitride (Si3N4), and no other nitrides were detected in any of the residues (Lee et al., 1995). Stepped combustion has demonstrated the presence of at least two components with low C/N ratios, which have been interpreted as Si3N4. The most abundant component, common to all the meteorites studied, released during combustion at temperatures >1150 °C, may have formed during metamorphism of the meteorite's parent body. In addition, the ordinary chondrites Tieschitz and Inman show evidence for a second component of Si3N4 that is less stable to combustion than the first and is enriched in 15N. The unusual N-isotope signature suggests that this second type of Si3N4 may constitute a new type of interstellar grain. A comparison of the isotope and microscope data suggests that the >1150 °C component can be related to nierite (α-Si3N4) and the less stable component to β-Si3N4.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号