首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strain response and re-equilibration of CH4-rich synthetic aqueous fluid inclusions in calcite during pressure drops
Authors:Julien Bourdet  Jacques Pironon
Institution:G2R, Nancy-Université, CNRS, CREGU, BP 239, 54506, Vandoeuvre-lès-Nancy, France
Abstract:Aqueous fluids in sedimentary basins often contain dissolved methane, particularly in petroleum environments. PVTX (Pressure-Volume-Temperature-Composition) reconstructions performed using fluid inclusion data are largely based on the assumption that inclusions do not change from the time of trapping until the present. Many authors, however, consider that fluid inclusions can re-equilibrate, particularly in fragile minerals like calcite. In order to understand this re-equilibration phenomenon in the metamorphic domain, previous experiments have been performed under high PT conditions, but few have been performed at low to medium PT conditions such as those associated with sedimentary burial diagenesis, and no previous studies have examined CH4-bearing aqueous inclusions in calcite.An experimental study of the preservation/modification of CH4-rich synthetic fluid inclusions in calcite during isothermal decompression was conducted. An autoclave was used for accurate PTX control allowing equilibrium between liquid and vapour in the CH4-H2O system. PTX conditions were maintained at four stages of decreasing pressure, with each stage held for 7 days to simulate an isothermal pressure drop. In order of decreasing pressure, the pressure-temperature conditions monitored were 276 ± 10 bar at 180 ± 7 °C, 176 ± 10 bar at 180 ± 7 °C, 76 ± 10 bar at 180 ± 7 °C and 10 ± 3 bar at 180 ± 15 °C. At the end of the experiment, the calcite was recovered and analyzed by microthermometry and Raman microspectroscopy for PTX reconstruction. A careful procedure was adopted to limit re-equilibration of inclusions during analytical procedures. Four types of inclusion shapes and four types of strain patterns were differentiated. Classification of the petrographic strain patterns was carried out. These strain patterns were associated with inclusion stretching and/or leakage regarding CH4, Th and Ph compared to experimental conditions. Factors controlling the preservation or acquisition of strain patterns included the initial shape and size of the inclusion, and the pressure differential (ΔP) between the confining pressure (Pcf) and the internal pressure (Pi) within the inclusion. Most fluid inclusions seemed to be trapped during the first 7 days of the experiment, although few (4%) of these preserved the initial PT conditions of 276 ± 10 bar, whereas 8% preserved the second and third run of PT conditions. Overall, the majority of inclusions (88%) did not reflect accurately the PTX trapping conditions. A petrographic guide to the inclusions is presented here that allows strain identification for PVT reconstructions. Re-equilibration patterns and evidence for preferential methane leakage from aqueous inclusions in calcite are important findings revealed by this study, and may be useful for the reconstruction of post-trapping events in investigations of natural samples, and in other experiments using synthetic inclusions in calcite.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号