首页 | 本学科首页   官方微博 | 高级检索  
     

辛方法的校正公式
引用本文:伍歆,黄天衣,万晓生. 辛方法的校正公式[J]. 天文学报, 2002, 43(4): 391-402
作者姓名:伍歆  黄天衣  万晓生
作者单位:南京大学天文系,南京,210093
基金项目:国家自然科学基金资助项目
摘    要:1996年Wisdom等提出了对辛方法进行校正的概念和实践,现在继续对辛校正进行详尽讨论和数值比较,尤其对哈密顿函数可分解为一个主要部分和多个次要部分的一般情形,用Lie级数推导任意阶的各种辛算法的一次和二次辛校正公式并对一些算法给出具体的辛校正公式。又以日、木、土三体问题为模型进行数值实验,结果表明一次辛校正能提高精度,改善数值稳定性。计算效率也比较高,因而值得推荐使用,辛方法通常用大步长数值积分,这时二次辛校正并没有显著提高结果的精度,却大大增加了计算时间,不应予以推荐。

关 键 词:天体力学 数值积分 辛方法 哈密顿函数
修稿时间:2002-01-09

On Correctors of Symplectic Integrators
WU Xin HUANG Tian-Yi WAN Xiao-Sheng. On Correctors of Symplectic Integrators[J]. Acta Astronomica Sinica, 2002, 43(4): 391-402
Authors:WU Xin HUANG Tian-Yi WAN Xiao-Sheng
Abstract:In 1996, Wisdom et al proposed the concept of corrector for a symplectic integrator and put it into practice. This is an intensive discussion with numerical comparison on symplectic correctors. Then it gives the method to derive the first and second correctors of any symplectic integrators by Lie series in a general case, in which the Hamiltonian can be separated into a main integrable part and several smaller integrable parts. Numerical experiments have been taken in a Sun-Jupiter-Saturn 3-body problem. It has shown that the first order corrector can raise precision, improve numerical stability, and has a good computer efficiency. Therefore, it deserves to be recommended. A large stepsize is usually adopted in the application of symplectic integrators. In this case the second order corrector has no notable advantages in raising precision. Furthermore, they would take much more computational time and should not be recommended.
Keywords:celestial mechanics: numerical integration  symplectic integrators
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号