首页 | 本学科首页   官方微博 | 高级检索  
     


Line formation in moving media: Asymptotic expansions of some special functions
Authors:S. I. Grachev
Affiliation:(1) V. V. Sobolev Astronomical Institute, St. Petersburg University, Russia
Abstract:Line formation in the spectrum of a moving medium with a spherical geometry is considered. In the Sobolev approximation there are some special functions that determine the source function and the force of radiation pressure in the line. The most important case is that of a small dimensionless velocity gradient (i.e., a large dimensionless Sobolev length τ) and a small ratio β of the opacity in the continuum to the opacity in the line. Until now there has been no detailed analytical information about the asymptotic behavior of these functions. For the case of a Doppler profile of the absorption coefficient, we clarify the nontrivial structure of their total asymptotic expansions for τ » 1, β « 1, and arbitrary Βτ. We give an algorithm for obtaining all the coefficients of these expansions and give explicit expressions for the first few coefficients. We also compare the asymptotic expansions with the numerical calculations of these functions available in the literature. We also briefly consider the case of a power-law decrease in the absorption coefficient in the line wing (and, in more detail, the case of Lorentz wings of the Voigt profile).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号