首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polar motion influences in the gravity data recorded by superconducting gravimeters
Institution:1. Institute of Geophysics, University of Tehran, Tehran, Iran;2. Department of Earth Science, Memorial University of Newfoundland, St. John''s, NL, A1B 3X5, Canada;1. Department of Mechanical Engineering, MEPCO Schlenk Engineering College, Sivakasi 626 005, Tamilnadu, India;2. Department of Mechanical Engineering, V V College of Engineering College, Tisaiyanvilai 627 657, Tamilnadu, India
Abstract:Gravity data stored in the GGP database (GGP-ISDC) are used to study the small gravity variations caused by polar motion. In a first step the dominant tidal signal and the instrumental drift have to be eliminated from the gravity data. In most cases it is sufficient to model the instrumental drift by polynomials of low degree. The resulting non-tidal gravity variations are split up into their main constituents by fitting two sinusoidal waves with periods of 365.25 days (annual wobble) and 432 days (Chandler wobble). In a similar way the gravity effect of the observed polar motion (IERS-Data) is processed. The ratio between the correspondent amplitudes gives the amplitude factors δ of both wobbles.In a more sophisticated model an additional annual wave was included, destined to absorb disturbing influences with annual period (e.g. environmental influences of different origin). The amount of these influences and the success of their elimination are very different at the individual stations.Besides the comparison of the amplitude factors it also was tried to compare the gravity residuals itself. For that purpose the data series recorded at the different stations were transferred to a common reference point (0°E, 45°N). The graph of the stacked data series gives a first impression of the accordance of the data series recorded at the different stations. Since randomly distributed disturbing influences are reduced by the averaging the amplitude factors derived from the mean of the stacked data series are more reliable than the values derived from the data at the individual stations.In the end 12 data series were included in a common processing. Amplitude factors of 1.183 for the annual and 1.168 for the Chandler wobble result with mean errors less than ±0.010 (roughly estimated). Although corrections for environmental influences were not included directly, the additionally fitted annual wave reduced the scatter of the amplitude factors in the annual range considerably. In contrast to that the amplitude factor of the Chandler wobble remains nearly unaffected, confirming the assumption that the disturbing environmental influences do not extend into the period range of the Chandler wobble.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号