Autogenic controls on hybrid bed distribution in submarine lobe complexes |
| |
Affiliation: | 1. University of Aberdeen, Department of Geology and Petroleum Geology, Aberdeen AB24 3UE, UK;2. Statoil ASA, 4035 Stavanger, Norway;3. University of Manchester, School of Earth, Atmospheric and Environmental Sciences, Basin Analysis and Petroleum Geoscience Group, Williamson Building, Oxford Road, Manchester, UK;1. Department of Earth Sciences, UCL (University College London), Gower Street, London WC1E 6BT, UK;2. Present address: ExxonMobil Production Company, Houston, TX, USA |
| |
Abstract: | Hybrid beds, the deposits of sediment gravity flows that show evidence for more than one flow regime (turbulent, transitional and/or laminar), have been recognized as important components of submarine lobe deposits. A wide range of hybrid bed types have been documented, however, quantitative analysis of the stratigraphic and geographic distribution of these enigmatic bed types is rare. Here, extensive exposures integrated with research borehole data from Unit A of the Laingsburg Formation and Fan 4 of the Skoorsteenberg Formation, Ecca Group, South Africa, provide the opportunity to examine geographical and stratigraphic patterns over a range of hierarchical scales.For this purpose, >23,000 individual beds have been evaluated for deposit type and bed thickness. On average, hybrid beds make up < 5% of all events and <10% of the cumulative thickness. Lobe complex 1 (LC1) of Fan 4,Skoorsteenberg Formation, preserves a prominent geographical trend of hybrid beds becoming more prevalent towards the frontal fringes of a lobe complex (up to 33.2% of beds), whereas their proportion in proximal and medial lobe complex settings is <10%.Data from Unit A, Laingsburg Formation, show hybrid beds are less common in the basal (A.1) and top (A.6) subunits compared to A.2-A.5 in both core data sets. The bases and tops of some lobe complexes (A.2, A.3 and A.5.7) are observed to be slightly enriched in hybrid beds, whereas others (A.5.1, A.5.5 and A.6.1) show no hybrid beds in their bases, which does not conform to expected allogenically-driven distributions that predict more hybrid beds during the initiation of lobe complexes. Instead, the occurrence and distribution of hybrid beds in lobe complexes are interpreted to be controlled by autogenic processes, including flow transformation processes on the basin-floor meaning enrichment in frontal lobe fringe settings. Therefore, the 1D distribution of hybrid beds in lobe complexes reflects the dominant stacking pattern of lobes within a lobe complex, with enrichment at the base and top of lobe complexes due to overall progradational to retrogradational stacking patterns. Individual lobes show a wide range of hybrid bed distributions, due to stacking patterns of the component lobe elements. These findings highlight the importance of autogenic processes rather than allogenic controls in the distribution of hybrid beds, which has implications for reservoir evaluation and the assessment of lobe stacking patterns in 1D core data sets. |
| |
Keywords: | Hybrid beds Distribution trends Autogenic controls Allogenic controls Lobes Deepwater fans |
本文献已被 ScienceDirect 等数据库收录! |
|