首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of thermal evolution of Paleozoic successions of the Holy Cross Mountains (Poland)
Institution:1. Dipartimento di Scienze, Università Roma Tre, Roma, Italy;2. Institut für Anorganische Chemie, Universität Stuttgart, Stuttgart, Germany;3. Département de Géologie, Université de Rabat, Rabat, Morocco;4. Institute für Geowissenschaften, Goethe University, Frankfurt, Germany;5. Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Germany;6. Istituto di Geoscienze e Georisorse, CNR, Pisa, Italy;1. Dipartimento di Scienze, Sezione di Geologia, Università degli Studi Roma Tre, L.go S. Leonardo Murialdo 1, 00146 Roma, Italy;2. Equipe Systèmes Volcaniques, Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, CNRS UMR-7154, Université Paris Diderot, Paris, France;3. Earth Observatory of Singapore, Asian School of the Environment, Nanyang Technological University, Singapore 639798, Singapore;4. Department of Public Health and Primary Care, University of Cambridge, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, UK;5. BPPTK (Balai Penyelidikan dan Pengembangan Tekonologi Kegunungapian), Yogyakarta, Indonesia;1. Faculty of Earth Sciences, University of Silesia, B?dzińska 60, 41-200 Sosnowiec, Poland;2. Polish Geological Institute, National Research Institute, Zgoda 21, 25-953 Kielce, Poland;4. Oregon State University, Department of Chemistry, Corvallis, Oregon 97331, USA;5. Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysi?clecia Państwa Polskiego 7, 25-314 Kielce, Poland
Abstract:Poland is considered the most prospective country for shale gas production in Europe. Hydrocarbon generation/expulsion scenarios, drawn in the latest intensive exploration phases, tend to overestimate maturation levels when compared with brand new data acquired after recent drillings. We tested an integrated workflow to correlate published and original thermal maturity datasets for the Paleozoic to Jurassic successions cropping out in the Holy Cross Mountains. These successions, when preserved in subsurface, host the major source rocks in the area. The application of the workflow allowed us to highlight the burial and thermal evolutionary scenarios of the two tectono-stratigraphic blocks of the Holy Cross Mountains (?ysogòry and Kielce blocks) and to propose this approach as a tool for reducing levels of uncertainty in thermal maturity assessment of Paleozoic successions worldwide. In particular, published datasets including colour alteration indexes of Paleozoic microfossils (conodont, acritarchs) and vitrinite and graptolite reflectance data, show differences in levels of thermal maturity for the ?ysogòry (mid mature to overmature) and Kielce (immature to late mature) blocks. Original data, derived from optical analysis, pyrolysis, and Raman spectroscopy on kerogen, and X-Ray diffraction on fine-grained sediments, mostly confirm and integrate published data distribution. 1D thermal models, constrained by these data, show burial and exhumation events of different magnitude, during the Late Cretaceous, for the ?ysogòry (maximum burial depths of 9 km) and Kielce (burial depths of 6 km) blocks that have been related to the Holy Cross Fault polyphase activity. In the end, Palynomorph Darkness Index and Raman spectroscopy on kerogen, for Llandoverian and Cambrian rocks, turned out to be promising tools for assessing thermal maturity of Paleozoic organic facies devoid of vitrinite macerals.
Keywords:Paleozoic source rocks  Thermal maturity  Vitrinite and organoclast reflectance  Clay mineralogy  Raman spectroscopy  Palynomorph darkness index  Holy Cross Mountains
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号