首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of freeze—thaw cycles on resilient properties of fine-grained soils
Authors:Thaddeus C Johnson  David M Cole  Edwin J Chamberlain
Institution:

aU.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N.H. (U.S.A.)

Abstract:Stress-deformation data for silt and clay subgrade soils were obtained from in-situ tests and laboratory tests, for use in mechanistic models for design of pavements that will experience freezing and thawing. Plate-bearing tests were run on in-service allbituminous-concrete (ABC) pavements constructed directly on silt subgrade, and on an experimental ABC pavement constructed on clay subgrade, applying repeated loads to the pavement surfaces while the subgrade was frozen, thawing, thawed, and fully recovered. The in-service pavement had experienced several seasons of natural cyclic freezing and thawing, while the experimental pavement was artificially frozen and thawed twice. Repeated-load laboratory triaxial compression tests were performed on the same soils in the frozen and thawed states.

Analysis of deflection data from the in-situ tests showed resilient moduli of the subgrade soils up to more than 10 GPa when frozen, as low as 2 MPa during the thawing period, and up to more than 100 MPa when fully recovered. Analysis of the laboratory tests, which gave moduli comparable to the latter values, showed that resilient modulus and Poisson's ratio in the thawed and recovering conditions can be expressed as a function of the stress state, the moisture content, and the dry density.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号