首页 | 本学科首页   官方微博 | 高级检索  
     

利用曲波域BivaShrink模型进行SAR图像去噪
引用本文:王文波, 张晓东, 羿旭明, 费浦生. 利用曲波域BivaShrink模型进行SAR图像去噪[J]. 武汉大学学报 ( 信息科学版), 2009, 34(7): 814-817.
作者姓名:王文波  张晓东  羿旭明  费浦生
作者单位:1武汉科技大学理学院,武汉市和平大道947号430065;2武汉大学测绘遥感信息工程国家重点实验室,武汉市珞喻路129号430079;3武汉大学数学与统计学院,武汉市珞珈山430072
基金项目:国家自然科学基金资助项目(70771080);湖北省教育厅科学基金资助项目(B20071103)
摘    要:从SAR图像Curvelet变换系数的统计特点出发,将Curvelet变换与子带相关去噪(BivaShrink)模型相结合,提出了一种新的基于Curvelet变换的SAR图像去噪方法。通过计算方差一致性范数和区域能量比,联合当前层和父层曲波系数,共同确定局部自适应窗口,从而最优估计Curvelet系数的阈值萎缩因子,实现降噪功能。实验结果表明,对于高分辨率SAR图像,该算法不论是在噪声的去除还是在结构信息等细节的保持上,均不同程度地优于其他常用斑点去噪方法,主观视觉效果和数值指标都有较好改进。

关 键 词:曲波变换  方差一致性范数  子带相关去噪
收稿时间:2009-05-11
修稿时间:2009-05-11

Speckle Suppression Method for SAR Image with Curvelet Domain BivaShrink Model
WANG Wenbo, ZHANG Xiaodong, YI Xuming, FEI Pusheng. Speckle Suppression Method for SAR Image with Curvelet Domain BivaShrink Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 814-817.
Authors:WANG Wenbo  ZHANG Xiaodong  YI Xuming  FEI Pusheng
Affiliation:1 College of Sciences,Wuhan University of Science and Technology,947 Heping Road,Wuhan 430065,China;2 State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing,Wuhan University,129 Luoyu Road,Wuhan 430079,China;3 School of Mathematics and Statistics,Wuhan University,Luojia Hill,Wuhan 430072,China
Abstract:Based on the statistical property of SAR image speckle noise and curvelet property of capturing the intrinsic geometrical structure of image,a method of SAR image denoising based curvelet domain adaptive BivaShrink meodel is presented combining curvelet transform with BivaShrink denoising model.By combining current layer curvelet coefficients and previous layer curvelet coefficients to calculate variance homogeneous measurement(VHM),the local adaptive window is determined to estimate the shrinkage factor optimally,then the curvelet coefficients are shrunk using the shrinkage factor.The scheme utilizing the correlation of curvelet coefficients in the same subband and previous subband,and it can reduces SAR speckle noise effectively and preserving details of SAR image as well.Experiment results show that the presented method achieves better performance not only at speckle reduction but also at the preservation of structural detail information than other commonly used speckle filters.
Keywords:curvelet transform  variance homogeneous measurement  BivaShrink denoise
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号