首页 | 本学科首页   官方微博 | 高级检索  
     


Carbonaceous aerosol transport from the Indo-Gangetic Plain to the Himalayas: Carbon isotope evidence and light absorption characteristics
Affiliation:1. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Department of Environmental Science, The Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden;4. The Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
Abstract:The Indo-Gangetic Plain (IGP) is a major regional and global emitter of atmospheric pollutants, which adversely affect surrounding areas such as the Himalayas. We present a comprehensive dataset on carbonaceous aerosol (CA) composition, radiocarbon (Δ14C) -based source apportionment, and light absorption of total suspended particle (TSP) samples collected over a 3-year period from high-altitude Jomsom in the central Himalayas. The 3-year mean TSP, organic carbon (OC), and elemental carbon (EC) concentrations were 92.0 ± 28.6, 9.74 ± 6.31, and 2.02 ± 1.35 μg m?3, respectively, with the highest concentrations observed during the pre-monsoon season, followed by the post-monsoon, winter, and monsoon seasons. The Δ14C analysis revealed that the contribution of fossil fuel combustion (ffossil) to EC was 47.9% ± 11.5%, which is consistent with observations in urban and remote regions in South Asia and attests that EC likely arrives in Jomsom from upwind IGP sources via long-range transport. In addition, the lowest ffossil (38.7% ± 13.3%) was observed in winter, indicating large contributions in this season from local biomass burning. The mass absorption cross-section of EC (MACEC: 8.27 ± 1.76 m2/g) and water-soluble organic carbon (MACWSOC: 0.98 ± 0.45 m2/g) were slightly higher and lower than those reported in urban regions, respectively, indicating that CA undergo an aging process. Organic aerosol coating during transport and variation of biomass burning probably led to the seasonal variation in MAC of two components. Overall, WSOC contributed considerably to the light absorption (11.1% ± 4.23%) of EC. The findings suggest that to protect glaciers of the Himalayas from pollution-related melting, it is essential to mitigate emissions from the IGP.
Keywords:Carbonaceous aerosol  Long-range transport  Carbon isotope  Source apportionment  Light absorption  The Himalayas
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号