首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Very high-frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope-based paleoclimate records
Authors:James UL Baldini  Frank McDermott  Dirk L Hoffmann  David A Richards  Nicholas Clipson
Institution:aDepartment of Earth Sciences, University of Durham, Durham, DH1 3LE, UK;bUCD School of Geological Sciences, University College Dublin, Belfield, D4, Ireland;cSchool of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK;dBristol Isotope Group, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ, UK;eUCD School of Biology and Environmental Science, University College Dublin, Belfield, D4, Ireland
Abstract:Cave air PCO2 at two Irish sites varied dramatically on daily to seasonal timescales, potentially affecting the timing of calcite deposition and consequently climate proxy records derived from stalagmites collected at the same sites. Temperature-dependent biochemical processes in the soil control CO2 production, resulting in high summer PCO2 values and low winter values at both sites. Large Large-amplitude, high-frequency variations superimposed on this seasonal cycle reflect cave air circulation. Here we model stalagmite growth rates, which are controlled partly by CO2 degassing rates from drip water, by considering both the seasonal and high-frequency cave air PCO2 variations. Modeled hourly growth rates for stalagmite CC-Bil from Crag Cave in SW Ireland reach maxima in late December (0.063 μm h− 1) and minima in late June/early July (0.033 μm h− 1). For well-mixed ‘diffuse flow’ cave drips such as those that feed CC-Bil, high summer cave air PCO2 depresses summer calcite deposition, while low winter PCO2 promotes degassing and enhances deposition rates. In stalagmites fed by well-mixed drips lacking seasonal variations in δ18O, integrated annual stalagmite calcite δ18O is unaffected; however, seasonality in cave air PCO2 may influence non-conservative geochemical climate proxies (e.g., δ13C, Sr/Ca). Stalagmites fed by ‘seasonal’ drips whose hydrochemical properties vary in response to seasonality may have higher growth rates in summer because soil air PCO2 may increase relative to cave air PCO2 due to higher soil temperatures. This in turn may bias stalagmite calcite δ18O records towards isotopically heavier summer drip water δ18O values, resulting in elevated calcite δ18O values compared to the ‘equilibrium’ values predicted by calcite–water isotope fractionation equations. Interpretations of stalagmite-based paleoclimate proxies should therefore consider the consequences of cave air PCO2 variability and the resulting intra-annual variability in calcite deposition rates.
Keywords:stalagmite  carbon dioxide  growth rates  paleoclimate  oxygen isotopes  cave atmosphere  climate proxies  calcite deposition  stable isotopes  seasonality
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号