首页 | 本学科首页   官方微博 | 高级检索  
     


Petrology,phase equilibria modelling,noble gas chronology and thermal constraints of the El Pozo L5 meteorite
Authors:Pedro Corona-Chávez  María del Sol Hernández-Bernal  Pietro Vignola  Rufino Lozano-Santacruz  Juan Julio Morales-Contreras  Margarita Reyes-Salas  Jesús Solé-Viñas  José F. Molina
Affiliation:1. Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones en Ciencias de la Tierra, Edificio U, Ciudad Universitaria, Morelia, 58020, Mexico;2. Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores, Unidad Morelia, 58190, Mexico;3. Consiglio Nazionale delle Ricerche (CNR) – Istituto per la dinamica dei processi ambientali, via Botticelli 23, 20133 Milan, Italy;4. Universidad Nacional Autónoma de México, Instituto de Geología, Circuito interior Ciudad Universitaria, 04510, Mexico;5. Universidad Nacional Autónoma de México, Instituto de Geofísica, Unidad Morelia, 58190, Mexico;6. Departamento de Mineralogía y Petrología, Universidad de Granada, Spain
Abstract:We present the results of physical properties, petrography, bulk chemistry, mineral compositions, phase relations modelling and Noble gases study of the meteorite El Pozo. The petrography and mineral compositions indicate that the meteorite is an L5 chondrite with a low shock stage of S2-S3. Heterogenous weathering was preferentially along shock structures. Thermobarometric calculations indicate thermal equilibrium conditions between 768?°C and 925?°C at ~4 to 6?kb, which are substantially consistent with the petrological metamorphism type 5. A pseudosection phase diagram is relatively consistent with the mineral assemblage observed and PT conditions calculated. Temperature vs. fO2 diagram shows that plagioclase compositional stability is very sensitive to Tschermack substitution in orthopyroxene, clinopyroxene and XAn plagioclase during the high temperature metamorphic process. Based on noble gases He, Ne, Ar and K contents a cosmogenic exposure age CRE of 1.9?Myr was calculated. The 21Ne would be totally cosmogenic, with no primordial Ne. The 21Ne/22Ne value (0.97) is higher than solar value. According to the cosmogenic Ne content, we argue that El Pozo chondrite originally had a pre-atmospheric mass of 9–10?kg, which would have been produced by a later collision after the recognized collision of the L-chondrite parent body ~470?Ma ago.
Keywords:Ordinary chondrite  El Pozo  Petrology  Metamorphism  Phase equilibria modelling  Thermobarometry  Cosmogenic ages
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号