首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Results from regional vibroseis profiling: Appalachian ultra-deep core hole site study
Authors:C Coruh  JK Costain  RD Hatcher  Jr    TL Pratt  RT Williams  RA Phinney
Institution:Regional Geophysics Laboratory, Virginia Tech, Blacksburg, VA 24061;Department of Geological Sciences, University of Tennessee, Knoxville, TN 37916;INSTOC, Snee Hall, Cornell University, Ithaca, New York, 14853;Department of Geology, University of South Carolina, Columbia, SC 29208;Department of Geological and Geophysical Sciences, Princeton University, Princeton, NJ 08540
Abstract:Summary. In 1985, 180 km of regional vibroseis profiles were acquired in the Carolinas and Georgia, southeastern United States, as part of the Appalachian Ultra-Deep Core Hole (ADCOH) Site Study. The data quality is excellent, with large-amplitude reflections from faults and crystalline rocks, lower Palaeozoic shelf strata and from within autochthonous Grenville basement. The profiles image the subsurface more clearly than other available data and allow the possibility of alternative interpretations of important elements of the tectonic framework of the southern Appalachians.
The major points in the interpretation are: 1) The Blue Ridge master decollement is at a depth of 2-3 km beneath the Blue Ridge. This thrust increases in dip just NW of the Brevard fault zone. 2) The Brevard fault zone appears to splay from the master decollement at 6 km (2.2 s) near Westminster, S.C., and defines the base of the crystalline Inner Piedmont allochthon. 3) Below the Blue Ridge thrust sheet are images of duplex and imbricate structures ("duplex tuning wedges") connected by other thrust faults that duplicate shelf strata to a thickness of 4–5 km. 4) Subhorizontal reflections from depths of 6 to 9 km may be from relatively undisturbed lower Palaeozoic strata as suggested by others. 5) Eocambrian-Cambrian(?) rift basins in the Grenville basement are also imaged.
The ADCOH data were originally recorded with 14–56 Hz bandwidth and 8 s length, but an extended Vibroseis correlation was used to produce 17 s data length revealing reflections from within the upper crust. Below 8 s, reflections from within the Grenville basement become weak, but are observable as late as 13 s; however, these Moho (?) reflections are generally short segments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号