首页 | 本学科首页   官方微博 | 高级检索  
     

基于摄影测量的ASTER影像云顶高度解算模型与实验
引用本文:何永健,张娅琳,邱新法,曹芸. 基于摄影测量的ASTER影像云顶高度解算模型与实验[J]. 地球信息科学学报, 2015, 17(2): 229-235. DOI: 10.3724/SP.J.1047.2015.00229
作者姓名:何永健  张娅琳  邱新法  曹芸
作者单位:1. 南京信息工程大学地理与遥感学院,南京 2100442. 山西省气候中心,太原 030006
基金项目:国家自然科学基金项目“复杂地形下月平均气温分布式模型研究”(41175077)。
摘    要:云顶高度是天气预报、天气监测的重要因子,准确的云顶高度对提高天气分析和数值预报的质量,具有重要的科学意义。立体几何法是公认云顶高度解算精度较高的方法,目前,普遍采用卫星-球心-投影云-真云的平面和球面三角几何关系,以及影像匹配技术解算云顶高度,由于采用了理想椭球体和重投影技术,以及对云移动考虑不足,因此误差较大。本文将数字摄影测量理论与遥感技术相结合,首次将摄影测量共线方程用于云顶高度解算。本文利用ASTER影像,依据相关系数法解求云迹风,并将其引入到摄影测量共线方程中,建立了ASTER影像的云顶高度解算模型,进行了未考虑和考虑风速的云顶高度解算,通过地面点计算,本文解算误差为2个像元(30 m)左右,经与MISR云顶高度产品对比分析,认为该模型解算的考虑风速的云顶高度精度优于MISR解算结果。

关 键 词:ASTER  云顶高度  云迹风  云顶高度解算方法  
收稿时间:2014-06-03

Study on Calculating Cloud-Top Height from ASTER Images Using Photogrammetry
HE Yongjian,ZHANG Yalin,QIU Xinfa,CAO Yun. Study on Calculating Cloud-Top Height from ASTER Images Using Photogrammetry[J]. Geo-information Science, 2015, 17(2): 229-235. DOI: 10.3724/SP.J.1047.2015.00229
Authors:HE Yongjian  ZHANG Yalin  QIU Xinfa  CAO Yun
Affiliation:1. School of geography and Remote sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China2. Centre for Climate of ShanXi Province, Taiyuan 030006, China
Abstract:Cloud-top height is an important factor in weather forecasting and monitoring. Accurate cloud-top height has important scientific significance for improving the quality of both weather analyses and numerical weather prediction. The geometric method to calculate cloud-top height using stereo image pair obtained from meteorological satellites has been recognized as providing relatively high precision, and has practical importance. However, this method does not fully consider cloud movement and typically assumes ideal ellipsoids in theory. Thus, the calculated cloud-top height still has a relatively large error in practice. In this study, cloud-movement speed was introduced into the collinearity equation of photogrammetry. We established a model to calculate the cloud-top height from the ASTER images (3B and 3N) with digital photogrammetry and remote sensing technology. Firstly, we created a stereo pair from ASTER images obtained on 25th September 2012. Then, the cloud-movement speed was calculated through matching cloud points. Finally, the cloud-top heights with and without consideration of wind speed were both calculated. Compared with ground control points, the model error is determined to be within two pixels (about 30 meter). We further compared our results with MISR products, and found that the cloud-top height determined without using wind speed is consistent with the height obtained from MISR, the difference between them is about 300 meters. Our cloud-top height determined with wind speed considered, however is about 1400 meters higher than that of MISR without wind considered. Marchand and Naud had identified in their research that the cloud-top height obtained from MISR is about 1000 meters lower than Lidar observation. This implies that our results with consideration of wind speed are closer to the Lidar observations. Due to the fact that our method for determining cloud-top height is dependent on the cloud moving speed, and the results with wind speed included have led to a good estimation of cloud-top height, we conclude that the wind speed should be included in algorithms for cloud-top height determination.
Keywords:ASTER  cloud-top height  cloud winds  cloud-top height calculation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号