首页 | 本学科首页   官方微博 | 高级检索  
     


Episodic mesozoic volcanism in Namibia and Brazil: A K—Ar Isochron study bearing on the opening of the south atlantic
Authors:Gerard Siedner  John G. Mitchell
Affiliation:Department of Geodesy and Geophysics, Madingley Rise, Cambridge Great Britain;Department of Geophysics, University of Newcastle upon Tyne, Newcastle upon Tyne Great Britain
Abstract:An attempt is made to find a more objective and precise basis for the correlation of volcanics from southwestern Africa and South America than is possible by frequency diagrams of individual K—Ar ages. This leads to a critical appraisal of conventionally calculated K—Ar ages with the conclusion thata priori assumption regarding the isotopic composition of non-radiogenic argon and, hence, the standard atmospheric correction, are no longer tenable.K—Ar isotoopic data on Mesozoic basalts and dolerites from Namibia and Brazil are presented in terms of an isochron model. Plots for cogenetic rocks are unacceptably scattered on a “radiogenic”40Ar vs. K diagram, but show a high degree of collinearity on40Ar/36Ar diagrams0K/36Ar diagrams. Using the latter plots, a number of isochrons are generated which indicate that Mesozoic volcanism in these regions occured as several discrete episodes of fairly short duration. Effusion of the extensive Serra Geral basalts of Brazil and the Kaoko basalts of Namibia is shown to have occured simultaneeously at 121 m.y.B.P. Basalts from a series of boreholes along the central Parana Basin, as well as a group of dykes from Sao Paulo, yield isochrons of 128 m.y., which coincides with the postulated onset of separation of Africa and South America based on marine magnetic anomalies. Linear dyke swarms along the Namibian seaboard, interpreted as an expression of the earliest rift phase, have an isochron age of 134 m.y. Sills and dykes, mainly from southern Namibia, with isochron ages of 183 m.y. are considered to be the westernmost manifestation of Stormberg volcanism, not necessarily related to rifting. Most of the igneous suites examined have initial40Ar/36Ar ratios significantly different from the modern atmospheric value.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号