首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low velocity impacts into dust: results from the COLLIDE-2 microgravity experiment
Authors:Joshua E Colwell
Institution:Laboratory for Atmospheric and Space Physics, University of Colorado, Campus Box 392, Boulder, CO 80309-0392, USA
Abstract:We present the results of the second flight of the Collisions Into Dust Experiment (COLLIDE-2), a space shuttle payload that performs six impact experiments into simulated planetary regolith at speeds between 1 and 100 cm/s. COLLIDE-2 flew on the STS-108 mission in December 2001 following an initial flight in April 1998. The experiment was modified since the first flight to provide higher quality data, and the impact parameters were varied. Spherical quartz projectiles of 1-cm radius were launched into quartz sand and JSC-1 lunar regolith simulant targets 2-cm deep. At impact speeds below ∼20 cm/s the projectile embedded itself in the target material and did not rebound. Some ejecta were produced at ∼10 cm/s. At speeds >25 cm/s the projectile rebounded and significant ejecta was produced. We present coefficients of restitution, ejecta velocities, and limits on ejecta masses. Ejecta velocities are typically less than 10% of the impact velocity, and the fraction of impact kinetic energy partitioned into ejecta kinetic energy is also less than 10%. Taken together with a proposed aerodynamic planetesimal growth mechanism, these results support planetesimal growth at impact speeds above the nominal observed threshold of about 20 cm/s.
Keywords:Planetary rings  Planetesimals  Experimental techniques  Dust  Collisions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号