首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival
Authors:Ignacio Mosqueira  Paul R Estrada
Institution:a NASA Ames/SETI Institute, Mail Stop 245-3, Moffett Field, CA 94305, USA
b Astronomy Department, 406 Space Sciences Building, Cornell University, Ithaca, NY 14850, USA
Abstract:For a satellite to survive in the disk the time scale of satellite migration must be longer than the time scale for gas dissipation. For large satellites (∼1000 km) migration is dominated by the gas tidal torque. We consider the possibility that the redistribution of gas in the disk due to the tidal torque of a satellite with mass larger than the inviscid critical mass causes the satellite to stall and open a gap (W.R. Ward, 1997, Icarus 26, 261-281). We adapt the inviscid critical mass criterion to include gas drag, and m-dependent nonlocal deposition of angular momentum. We find that such a model holds promise of explaining the survival of satellites in the subnebula, the mass versus distance relationship apparent in the saturnian and uranian satellite systems, the concentration of mass in Titan, and the observation that the satellites of Jupiter get rockier closer to the planet whereas those of Saturn become increasingly icy. It is also possible that either weak turbulence (close to the planet) or gap-opening satellite tidal torque removes gas on a similar time scale (104-105 years) as the orbital decay time of midsized (200-700 km) regular satellites forming in the inner disk (inside the centrifugal radius (I. Mosqueira and P.R. Estrada, 2003, Icarus, this issue)). We argue that Saturn’s satellite system bridges the gap between those of Jupiter and Uranus by combining the formation of a Galilean-sized satellite in a gas optically thick subnebula with a strong temperature gradient, and the formation of smaller satellites, closer to the planet, in a disk with gas optical depth ?1, and a weak temperature gradient.Using an optically thick inner disk (given gaseous opacity), and an extended, quiescent, optically thin outer disk, we show that there are regions of the disk of small net tidal torque (even zero) where satellites (Iapetus-sized or larger) may stall far from the planet. For our model these outer regions of small net tidal torque correspond roughly to the locations of Callisto and Iapetus. Though the precise location depends on the (unknown) size of the transition region between the inner and outer disks, the result that Saturn’s is found much farther out (at ∼3rcS, where rcS is Saturn’s centrifugal radius) than Jupiter’s (at ∼ 2rcJ, where rcJ is Jupiter’s centrifugal radius) is mostly due to Saturn’s less massive outer disk and larger Hill radius. However, despite the large separation between Ganymede and Callisto and Titan and Iapetus, the long formation and migration time scales for Callisto and Iapetus (I. Mosqueira and P.R. Estrada, 2003, Icarus, this issue) makes it possible (depending on the details of the damping of acoustic waves) that the tidal torque of Ganymede and Titan clears the gas disk out to their location, thus stranding Callisto and Iapetus far from the planet. Either way, our model provides an explanation for the presence of regular satellites outside the centrifugal radii of Jupiter and Saturn, and the absence of such a satellite for Uranus.
Keywords:Galilean satellites  Gas dynamics  Formation of satellites  Protoplanetary disks
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号