首页 | 本学科首页   官方微博 | 高级检索  
     


Properties of the hermean regolith: iii. disk-resolved vis-NIR reflectance spectra and implications for the abundance of iron
Authors:J. Warell
Affiliation:a Institutionen för Astronomi och Rymdfysik, Uppsala Universitet, Box 515, SE-751 20 Uppsala, Sweden
Abstract:Disk-resolved reflectance spectra of the surface of Mercury (longitudes 240-300°), obtained in the visual (vis) and near-infrared (NIR) spectral region, are presented and analyzed. The observations were made at the 2.6-m Nordic Optical Telescope with the ALFOSC low-resolution spectrograph on 20 and 22 June 1999 in the wavelength range 520-970 nm with a footprint size of 700 km on the mid-disk of Mercury. A method which enables more accurate correction for telluric line absorptions and atmospheric extinction than that applied on previously published vis-NIR spectra of Mercury is introduced. The resulting reflectance spectra are remarkably linear, lack significant absorption features, and have optical slopes comparable to remotely sensed lunar pure anorthosites. The relation between spectral slope and photometric geometry found by Warell (2002, Icarus 156, 313-317) is confirmed and is explained as caused by strongly backscattering particles with embedded submicroscopic metallic iron in a mature regolith. With the theoretical maturation model of Hapke (2001, J. Geophys. Res. 106 (E5), 10039-10073) an abundance of 0.05-0.3 wt% submicroscopic metallic iron in the regolith for silicate grain sizes in the range 10-80 μm is determined, implying a ferrous iron content in mafic minerals intrinsically lower than that of the lunar highlands. A binary crustal composition model with anorthite linearly mixed with pyroxene provides better spectral fits than a pure anorthitic composition. Comparison with mature lunar pure anorthosite spectra yields a confident upper limit to the FeO content of 3 wt% under the assumption that the surfaces are similarly matured, but this figure probably represents a considerable overestimate. The average mercurian regolith does not seem to be substantially more weathered than the most mature lunar highland soils in terms of abundance of submicroscopic metallic iron, indicating that a steady-state maturation level has been reached. However, the strong relation between optical spectral slope and photometric geometry may imply that the majority of regolith particles are more fine-grained than their lunar counterparts and that the regolith is admixed with complex agglutinate weathering products which are more abundant and more transparent than those of the lunar highlands. This is consistent with more energetic impacts and a higher rate of impact melt production in an iron-poor regolith. An observed relation between the spectral slope and latitude provides evidence that the Ostwald ripening process may be operating at equatorial latitudes on Mercury.
Keywords:Mercury   Mineralogy   Regoliths   Surfaces, planets   Spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号