首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heating of Jupiter’s thermosphere by the dissipation of upward propagating acoustic waves
Authors:Gerald Schubert  Michael P Hickey
Institution:a Space Science Applications Laboratory, The Aerospace Corporation, Los Angeles, CA 90009, USA
b Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA
c Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
Abstract:Thunderstorms in Jupiter’s atmosphere are likely to be prodigious generators of acoustic waves, as are thunderstorms in Earth’s atmosphere. Accordingly, we have used a numerical model to study the dissipation in Jupiter’s thermosphere of upward propagating acoustic waves. Model simulations are performed for a range of wave periods and horizontal wavelengths believed to characterize these acoustic waves. The possibility that the thermospheric waves observed by the Galileo Probe might be acoustic waves is also investigated. Whereas dissipating gravity waves can cool the upper thermosphere through the effects of sensible heat flux divergence, it is found that acoustic waves mainly heat the Jovian thermosphere through effects of molecular dissipation, sensible heat flux divergence, and Eulerian drift work. Only wave-induced pressure gradient work cools the atmosphere, an effect that operates at all altitudes. The sum of all effects is acoustic wave heating at all heights. Acoustic waves and gravity waves heat and cool the atmosphere in fundamentally different ways. Though the amplitudes and mechanical energy fluxes of acoustic waves are poorly constrained in Jupiter’s atmosphere, the calculations suggest that dissipating acoustic waves can locally heat the thermosphere at a significant rate, tens to a hundred Kelvins per day, and thereby account for the high temperatures of Jupiter’s upper atmosphere. It is unlikely that the waves detected by the Galileo Probe were acoustic waves; if they were, they would have heated Jupiter’s thermosphere at enormous rates.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号