首页 | 本学科首页   官方微博 | 高级检索  
     

海底双相随机介质声反射的SVM神经网络分类识别研究
引用本文:尤加春,李红星. 海底双相随机介质声反射的SVM神经网络分类识别研究[J]. 海洋学报, 2014, 36(3): 134-142. DOI: 10.3969/J.ISSN.0253-4193.2014.03.015
作者姓名:尤加春  李红星
作者单位:1.中国地质大学 地球物理与信息技术学院, 北京 100083
基金项目:国家自然科学基金项目(41104073,41364004);江西省自然科学基金项目(2010GQS0002);国家“863”计划课题(2012AA09A404);国家海洋局海底科学重点实验室开放基金(KCSG0803)联合资助。
摘    要:考虑海底沉积介质为双相介质,为了更好地模拟实际海底底质的不均匀性,将随机介质理论引入双相介质理论。首先,通过基于随机-双相介质理论的高阶有限差分数值技术模拟计算海底底质分别为泥质砂、泥、泥质砾时的地震反射波信号。然后利用小波变换分别求取不同底质的一次反射波的包络作为其特征向量,最后利用基于粒子群智能算法优化的支持向量机神经网络对这些反射波信号进行分类识别。为了进一步考察所用方法的抗噪能力,对正演得到的海底底质反射波信号分别加入10%、30%、50%的高斯白噪音之后再进行分类,支持向量机仍然取得了较好的分类预测效果。基于上述正演模拟及分类识别方法的论证,提出了一套行之有效的微机软件模拟海底沉积物分类识别的一般化流程,这将有利于开展海底沉积物反射特征的进一步研究。

关 键 词:双相随机介质   等效介质理论   支持向量机   粒子群算法
收稿时间:2012-12-15
修稿时间:2013-10-25

The use of SVM to classify the reflection from submarine random two-phase medium
You Jiachun and Li Hongxing. The use of SVM to classify the reflection from submarine random two-phase medium[J]. Acta Oceanologica Sinica (in Chinese), 2014, 36(3): 134-142. DOI: 10.3969/J.ISSN.0253-4193.2014.03.015
Authors:You Jiachun and Li Hongxing
Affiliation:1.School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China2.School of Nuclear Engineering and Geophysics, East China Institute of Technology, Fuzhou 344000, China
Abstract:In this paper,to better simulate the actual heterogeneity of the seabed sediment,the random medium theory is introduced into the two-phase medium theory. Firstly,through the high-order staggered-mesh finite different simulation of random two-phase media,simulated the propagation of the seismic wave of three different the sediments,which are shaly sand,mudstones,muddy conglomerate. Then,the wavelet transformation technology is used to obtain the envelopes of reflection,called as the feature vector,which will be used as the input term of neural network. Finally,support vector machine neural network based on particle swarm optimization was applied to classify these data. To further investigate the anti-noise ability of the proposed method,the 10%,30% and 50% of Gaussian white noise was added into the original data and the optimized support vector machines still achieved good classification prediction. Based on the repeatable,convenient of the computer simulation and the relevant high accuracy and the robustness of SVM,a total solution of a classification,which will be easier,deeper,further to sturdy the feature of reflection of sediments is proposed in the article.
Keywords:random two-phase medium  support vector machine  equivalent medium theory  particle swarm optimization
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号