首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen defect saturation in natural pyroxene
Authors:Rickard Sundvall  Henrik Skogby
Institution:1.Enheten f?r mineralogi,Naturhistoriska riksmuseet,Stockholm,Sweden;2.Institutionen f?r geologiska vetenskaper,Stockholm,Sweden
Abstract:Dehydration via the redox reaction: OH? + Fe2+ ? O2? + Fe3+ + ½H2 is believed to be a commonly occurring process in pyroxenes and other nominally anhydrous minerals (NAMs) from the upper mantle and appears to be fast enough to allow significant dehydration during magma ascent. Nevertheless, the mobility of hydrogen incorporating defects is controlled by cation diffusion with approximately two orders of magnitude slower reaction kinetics than the iron redox reaction, and host defects have a much higher likelihood to be preserved than the hydrogen itself. Therefore, restoring hydrogen into the structure would be possible by driving the redox reaction backwards, as long as temperature and time are limited so as not to change the defect state of the crystal structure. Here we investigate the re-hydration capacity of megacryst and xenocryst ortho- and clinopyroxene by stepwise thermal annealing of crystallographically oriented samples in 1 atm H2. H concentration was measured by FTIR spectroscopy after each annealing step. Most samples show only a small increase in water content up to a presumed saturation level, after which further heat treatments in H2 resulted in a slight decrease in water contents. However, two of the studied samples, both fairly Fe rich megacrysts, are significantly rehydrated. Some samples or crystal sections exhibit a practically inert behavior, with minor fluctuations around initial water concentrations. Present results indicate that most mantle pyroxenes have not been substantially dehydrated during late stage magma processes, and that restoring water is possible in samples which have lost considerable amounts of water.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号