首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulations of transport of non-ergodic solute plumes in heterogeneous aquifers
Authors:You-Kuan Zhang and Jie Lin
Institution:(1) Department of Geology 121 Trawbridge Hall University of Iowa Iowa City, Iowa 52242, USA, US
Abstract:Transport of non-ergodic solute plumes by steady-state groundwater flow with a uniform mean velocity, μ, were simulated with Monte Carlo approach in a two-dimensional heterogeneous and statistically isotropic aquifer whose transmissivity, T, is log-normally distributed with an exponential covariance. The ensemble averages of the second spatial moments of the plume about its center of mass, <S i i (t)>, and the plume centroid covariance, R i i (t) (i=1,2), were simulated for the variance of Y=log T, σ Y 2=0.1, 0.5 and 1.0 and line sources normal or parallel to μ of three dimensionless lengths, 1, 5, and 10. For σ Y 2=0.1, all simulated <S i i (t)>−S i i (0) and R i i (t) agree well with the first-order theoretical values, where S i i (0) are the initial values of S i i (t). For σ Y 2=0.5 and 1.0 and the line sources normal to μ, the simulated longitudinal moments, <S 11(t)>−S 11(0) and R 11(t), agree well with the first-order theoretical results but the simulated transverse moments <S 22(t)>−S 22(0) and R 22(t) are significantly larger than the first-order values. For the same two larger values of σ Y 2 but the line sources parallel to μ, the simulated <S 11(t)>−S 11(0) are larger than but the simulated R 11 are smaller than the first-order values, and both simulated <S 22(t)>−S 22(0) and R 22(t) stay larger than the first-order values. For a fixed value of σ Y 2, the summations of <S i i (t)>−S i i (0) and R i i , i.e., X i i (i=1,2), remain almost the same no matter what kind of source simulated. The simulated X 11 are in good agreement with the first-order theory but the simulated X 22 are significantly larger than the first-order values. The simulated X 22, however, are in excellent agreement with a previous modeling result and both of them are very close to the values derived using Corrsin's conjecture. It is found that the transverse moments may be significantly underestimated if less accurate hydraulic head solutions are used and that the decreasing of <S 22(t)>−S 22(0) with time or a negative effective dispersivity, defined as , may happen in the case of a line source parallel to μ where σ Y 2 is small.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号