首页 | 本学科首页   官方微博 | 高级检索  
     

利用HJ-1B模拟数据反演地表温度的两种单通道算法
引用本文:徐剑波, 肖志峰, 钟林忆, 蔡德楠, 钟德福, 朱晓强. HJ-1B热红外LST反演及利用偏微分对其误差精度分析[J]. 武汉大学学报 ( 信息科学版), 2016, 41(11): 1505-1511. DOI: 10.13203/j.whugis20140475
作者姓名:徐剑波  肖志峰  钟林忆  蔡德楠  钟德福  朱晓强
作者单位:1.华南农业大学信息学院, 广东 广州, 510642
基金项目:国家自然科学基金(41061024);国家“十二五”科技支撑计划项目(2013BAJ13B05)
摘    要:
针对HJ-1B热红外波段特点,采用修正型QK & B算法,反演广州市2013-01-14的地表温度(land surface temperature,LST)。建立偏微分方程得出,当辐射率误差为0.01时,引起的LST误差约为0.6 K,LST误差与大气透过率成反比,与大气透过率误差成正比,0.1的透过率误差引起LST误差约1 K。大气水汽含量w误差与LST误差成线性关系,当大气水汽含量误差为0.1 g/cm2时,引起LST误差约为0.2 K。LST反演误差与近地表气温误差和大气平均作用温度误差均成正比,1 K的近地表气温误差引起LST反演误差约1K。
总的来说,LST反演误差与区间比值和大气平均作用温度误差和近地表气温误差相关。用算法反演出来的广州市地表温度与MOD11_L2温度产品具有较强的空间一致性,温度差值曲线呈正态分布,主要集中在-0.9~0.9℃区域,选取广州市6个观测点,得出修正型QK & B算法和实测地温平均值相差约为0.31 K,MOD11_L2与实测地温的温度平均值相差0.65 K,误差均小于1 K。通过对修正型QK & B算法偏微分方程的推导,可对HJ-1B/IRS中的LST反演进行更细致和精确的分析,为其他针对环境卫星热红外波段类似反演LST的算法提供一定的借鉴,也为后续提高LST反演精度提供科学依据。


关 键 词:修正型QK&B算法  偏微分方程  敏感性分析  算法验证  HJ-1B
收稿时间:2015-03-16

Land Surface Temperature and Emissivity Estimation from Passive Sensor Data:Theory and Practice-Current Trends
XU Jianbo, XIAO Zhifeng, ZHONG Linyi, CAI Denan, ZHONG Defu, ZHU Xiaoqiang. Land Surface Temperature Retrieval from HJ-1B Satellite Thermal Infrared Data and Error Analysis with Partial Differential Equation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1505-1511. DOI: 10.13203/j.whugis20140475
Authors:XU Jianbo  XIAO Zhifeng  ZHONG Linyi  CAI Denan  ZHONG Defu  ZHU Xiaoqiang
Affiliation:1.College of informatics, South China Agricultural University, Guangzhou 510642, China
Abstract:
In this study, we retrieved the land surface temperature (LST) of Guangzhou on Jan 14, 2013. The retrieval was based on the characteristics of HJ-1B thermal infrared band, adopting a revised QK & B algorithm. The established partial differential equation showed that the emissivity error of 0.01 resulted in a LST error of around 0.6 K. The LST error was negatively correlated to the atmospheric transmittance and positively correlated to the atmospheric transmittance error; the transmittance error of 0.1 resulted in a LST error of around 1 K. Meanwhile, the atmospheric water vapor error and the LST error exhibited a linear relation; the atmospheric water vapor error of 0.1 g/cm2 resulted in LST error of around 0.2 K. The LST retrieval error was positively correlated to both the near-surface air temperature error and the average atmospheric error; the near-surface air temperature error of 1 K led to the LST retrieval error of around 1 K.
Overall, the LST retrieval error and interval ratio are related to the average atmospheric temperature error as well as the near-surface air temperature error. The retrieved land surface temperature of Guangzhou was in strong spatial accordance with the MOD11_L2 LST product. The temperature difference curve exhibited a normal distribution, concentrated in the range of -0.9℃ to 0.9℃. Six ground measurement spots in Guangzhou were chosen to compare the LST obtained by the revised QK & B algorithm with the ground measured average surface temperature. The difference between the LST obtained using the algorithm and the measured ground temperature was around 0.31 K, whereas the MOD11_L2 product had a difference of around 0.65 K with the measured surface temperature, both were less than 1 K. By deriving the partial differential equation of the revised QK & B algorithm, a more detailed and precise analysis was performed on LST retrieval in HJ-1B/IRS. This study also provides a reference for other similar LST retrieval algorithms based on environmental satellite thermal infrared band, as well as a scientific basis for future improvement of LST retrieval accuracy.
Keywords:revised QK & B algorithm  partial differential equation  sensitivity analysis  algorithm validation  HJ-1B
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号