首页 | 本学科首页   官方微博 | 高级检索  
     


Using multicomponent GPR to monitor cracks in a historical building
Authors:Luciana Orlando  Evert Slob  
Affiliation:aSapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy;bDepartment of Geotechnology, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
Abstract:We tested the usefulness of acquiring multicomponent GPR data to detect cracks in a historical building, and to monitor their dynamics, caused by a slowly and irregularly moving landslide. We used 2 GHz bipolar antennas in a configuration that allows for acquiring the in-line and cross-line electric field components with x- and y-directed antennas. The 2 × 2 data matrix was collected on a floor in the building along transects at four different times over a period of one year. The data were processed with a standard 2D scalar algorithm and with the latest 3D single component vector algorithm that corrects for antenna effects. We have implemented a 3D single component vector migration algorithm in a 2.5D sense to produce 2D slices of a 3D vector migration image by applying the algorithm on line data. This procedure allows for migrating single component line data taking into account all vector effects as well as three-dimensional wave propagation. We show that the 2.5D vector migration images have a much better in-line resolution than the migration images obtained by applying a standard 2D scalar migration algorithm.The GPR profiles agree with the a priori information about the structure of the floor. In particular, we detected two different types of anomalies, only a few of which can be due to utilities and to metallic mesh. Some shallower anomalies agree well with the cracks visible on the tiling, suggesting that some cracks can be directly detected using GPR. Visually there were no changes in the cracks on the floor and no clear changes in the GPR data could be attributed to possible subsurface changes in the cracks. The variations in the GPR images seemed primarily caused by changes in the coupling of the antennas with the investigated structure (floor) depending on the season when the measurements were made. For this reason the monitoring aspect of the survey is not successful.
Keywords:High-frequency GPR   Multicomponent   Cracks monitoring   Historical building
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号