首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sap flow characteristics of four typical species in desert shelter forest and their responses to environmental factors
Authors:Jian-Xin Ma  Ya-Ning Chen  Wei-Hong Li  Xiang Huang  Cheng-Gang Zhu  Xiao-Dong Ma
Institution:1. Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
2. Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
Abstract:Sap flows of four typical species, Populus. russkii Jabl., Populus euphratica Olive., Ulmus pumila L., and Elaeagnus angustifolia L., of artificial shelter forest in a desert area were monitored in all-weather conditions using SF300 Sap flow Meter based on the theory of thermal compensation. Meanwhile, air temperature (T a), leaf temperature (T l), soil temperature (T s), relative humidity (RH), and wind velocity (V w) were simultaneously recorded by an automatic weather station. The results indicate that (1) the diurnal processes of stem sap flows of P. russkii Jabl., P. euphratica Olive., and U. pumila L., but not E. angustifolia L., show an obvious circadian rhythm. Significant differences of stem sap flow rates were found among species, but not genus. The average sap flow rate of P. russkii Jabl. is 13.8-fold of that of E. angustifolia L. The order of sap flux density (SFD) from the largest to the smallest is P. russkii Jabl., P. euphratica Olive, U. pumila L. and E. angustifolia L.; (2) compared with 373?mm, 747?mm irrigation can induce microenvironmental changes that result in the suppression of photosynthesis and transpiration and the decline of stem sap flow rates of the above four species, indicating 373?mm irrigation meets the growth needs of the above species during experiment; (3) sap flow rates are different at different stem positions: the flow rates of P. russkii Jabl., U. pumila L. and E. angustifolia L., but not P. euphratica Olive, decline gradually from cambium to pith; (4) the correlation analysis indicates that stem sap flow is negatively correlated with RH and T s and positively correlated with T a, T l and saturation vapor pressure deficit (VPD). The sap flow rate of P. russkii Jabl. is significantly affected by V w due to its large size and height. In addition, a model was established by stepwise regression analysis to estimate the relationship between the environmental factors and stem sap flows of the above four typical species of shelter forest in the desert area.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号