首页 | 本学科首页   官方微博 | 高级检索  
     

四氯乙烯在不同地下水环境的生物共代谢降解
引用本文:李烨,潘涛,刘菲,李森,郭淼. 四氯乙烯在不同地下水环境的生物共代谢降解[J]. 岩矿测试, 2012, 31(4): 682-688
作者姓名:李烨  潘涛  刘菲  李森  郭淼
作者单位:1. 北京市环境保护科学研究院国家城市环境污染控制工程技术研究中心,国家环境保护工业废水污染控制工程技术(北京)中心,北京100037
2. 中国地质大学(北京)水资源与环境工程北京市重点实验室,北京,100083
3. 沈阳水务集团,辽宁沈阳,110003
基金项目:住房和城乡建设部水体污染控制与治理科技重大专项"地下水源城市饮用水安全保障共性技术研究与示范"课题(2009ZX07424-002)
摘    要:四氯乙烯是地下水中常见的污染物,采用生物方法进行处理的优点是可以实现无害化、无二次污染、处理成本低。四氯乙烯只能在厌氧条件下发生还原脱氯,目前对产甲烷环境下四氯乙烯的降解研究较多,而对较弱还原环境,如反硝化、铁锰还原和硫酸盐还原环境下四氯乙烯的脱氯行为研究甚少。本文采用批实验,研究了在不同地下水环境,包括反硝化、铁还原、硫酸盐还原、混合电子受体和天然地下水环境下四氯乙烯的脱氯性能。结果表明,铁还原环境的四氯乙烯脱氯效果最好,天然地下水环境次之,四氯乙烯的去除率分别达到91.34%和84.71%,四氯乙烯很快转化为三氯乙烯,并可以进一步转化为二氯乙烯,四氯乙烯的降解符合准一级反应动力学方程。在反硝化、硫酸盐还原、混合电子受体环境,四氯乙烯的去除以挥发为主,降解只占很小的比例,且最终的降解产物只有三氯乙烯。地下水中三价铁的存在,对于四氯乙烯脱氯起促进作用;而当地下水中硝酸盐和硫酸盐的浓度较高时,四氯乙烯脱氯受到抑制。

关 键 词:地下水  四氯乙烯  生物降解  共代谢
收稿时间:2012-03-02

Co-metabolism Biodegradation of Tetrachloroethylene under Different Groundwater Conditions
LI Ye,PAN Tao,LIU Fei,LI Sen and GUO Miao. Co-metabolism Biodegradation of Tetrachloroethylene under Different Groundwater Conditions[J]. Rock and Mineral Analysis, 2012, 31(4): 682-688
Authors:LI Ye  PAN Tao  LIU Fei  LI Sen  GUO Miao
Affiliation:National Urban Environment Pollution Control Engineering Techniques Research Center, Beijing Municipal Research Institute of Environmental Protection, National Environmental Protection Industrial Sewage Pollution Control Engineering Techniques Center (Beijing), Beijing 100037, China;National Urban Environment Pollution Control Engineering Techniques Research Center, Beijing Municipal Research Institute of Environmental Protection, National Environmental Protection Industrial Sewage Pollution Control Engineering Techniques Center (Beijing), Beijing 100037, China;Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China;Shenyang Water Affairs Group, Shenyang 110003, China;Shenyang Water Affairs Group, Shenyang 110003, China
Abstract:Tetrachloroethylene (PCE) is one of the most common contaminants in groundwater. The microorganism treatment method has the advantages of low cost and no secondary pollution. PCE can only be biodegraded under reducing conditions, and most research aimed at PCE biodegradation under methanogenic conditions and few under relatively weak reducing conditions, such as denitrifying, iron reducing, sulfate reducing. Trichloroethylene (TCE) biodegradation under different groundwater conditions, including denitrifying, iron reducing, sulfate reducing, mixing electron acceptors and natural groundwater condition, was studied with batch experiments and is described in this paper. The results show that the iron reducing condition is the best condition for PCE biodegradation, followed by natural groundwater condition with PCE removal efficiencies of 91.34% and 84.71% respectively. PCE is transformed to TCE quickly, and to dichlorethane (DCE) eventually. PCE biodegradation is in accordance with the first order kinetic equation. It is difficult to achieve PCE biodegradation in denitrifying, sulfate reducing and mixing electron acceptor conditions, and the degradation product is TCE only, where most PCE is removed by volatilization. PCE biodegradation is promoted by the existence of ferric iron, while it is inhibited by the high concentration of nitrate and sulfate.
Keywords:groundwater  tetrachloroethylene  biodegradation  co-metabolism
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《岩矿测试》浏览原始摘要信息
点击此处可从《岩矿测试》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号