首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling forest canopy gaps using LiDAR-derived variables
Authors:Leighton Lombard  Riyad Ismail
Affiliation:Department of Geography and Environmental Studies, Stellenbosch University, Stellenbosch, South Africa
Abstract:Remote sensing has revolutionized forest management and has been widely employed to model canopy gaps. In this study, a canopy height model (CHM) and an intensity raster (IR) derived from light detection and ranging (LiDAR) data were used to model canopy gaps within a four-year-old Eucalyptus grandis forest using an object-based image analysis (OBIA) approach. Model thematic accuracies using the CHM, intensity raster and combined data set (CHM and IR) were all above 90%, with KHAT values ranging from 0.88 to 0.96. Independent test thematic accuracies were also above 90%, with KHAT values ranging from 0.82 to 0.91. A comparative area-based assessment yielded accuracies ranging from 70 to 90%, with the highest accuracies achieved using the combined data set. The results of this study show that using a CHM and intensity raster, and an OBIA approach, provides a viable framework to accurately detect and delineate canopy gaps within a commercial forest environment.
Keywords:Canopy gaps  LiDAR  OBIA  Getis-Ord Gi*  FRAGSTATS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号