首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN海上钻井平台检测模型的构建及训练算法分析
引用本文:柳林,孙毅,李万武. 基于CNN海上钻井平台检测模型的构建及训练算法分析[J]. 测绘通报, 2022, 0(7): 26. DOI: 10.13474/j.cnki.11-2246.2022.0198
作者姓名:柳林  孙毅  李万武
作者单位:山东科技大学, 山东 青岛 266590
基金项目:山东省自然科学基金(ZR 2019MD034)
摘    要:卷积神经网络(CNN)是深度学习(DL)中最具代表性的一种网络结构。合成孔径雷达(SAR)图像具有位置结构关系,CNN模型可以利用图像的位置结构关系,能够更好地提取图像特征,因此更适合采用CNN模型检测海洋目标。本文首先基于CNN框架构建了海上钻井平台检测的DL模型Ocean TDAx,并对模型进行训练和测试。试验结果表明,Ocean TDA9模型精度最高。然后针对Ocean TDA9模型,采用Adam、RMSprop、Stochastic gradient descent (SGD)、Adagrad、Momentum等7种模型训练算法进行试验,比较不同算法的训练损失和精度与训练批次的相关性。最后基于渤海海域的极化SAR数据,对提出的Ocean TDA9模型、已有的CNN模型及VGG模型进行海上钻井平台检测对比。结果表明,构建的Ocean TDA9模型在钻井平台检测中整体性能优良。

关 键 词:目标检测  钻井平台  卷积神经网络  模型训练  SAR影像  
收稿时间:2021-11-16

Detection model construction based on CNN for offshore drilling platform and training algorithm analysis
LIU Lin,SUN Yi,LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis[J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26. DOI: 10.13474/j.cnki.11-2246.2022.0198
Authors:LIU Lin  SUN Yi  LI Wanwu
Affiliation:Shandong University of Science and Technology, Qingdao 266590, China
Abstract:Convolutional neural networks (CNN) is the most representative network structure of deep learning (DL). Synthetic aperture radar (SAR) image itself has the position structure relationship, the characteristics of the CNN model determine that it can use the position structure relationship of the image to extract the features of the image better,so it is more suitable to use the CNN model for marine target detection.The paper based on CNN framework constructs the DL model Ocean TDAx of offshore drilling platform detection, trains and tests the OceanTDAx model through the improved WinR-Adagrad gradient training algorithm, experimental results show that the Oceant TDA9 model is the highest accuracy. For the Ocean TDA9 model, seven model training algorithms, such as adam, RMSprop, Stochastic gradient descent (SGD), Adagrad and Momentum, is used to conduct experiments,and the training loss and accuracy with relevance of training batches of different algorithmsis is compared. Based on the polarized SAR data of the Bohai sea, the proposed Ocean TDA9 model and the existing CNN model and Visual geometry group (VGG) model are used to compare the detection experiments of offshore drilling platforms.The results show that the constructed Ocean TDA9 model is excellent overall performance in drilling platform testing.
Keywords:target detection  drilling platform  convolutional neural network  model training  SAR image  
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号