首页 | 本学科首页   官方微博 | 高级检索  
     


Diverse mantle and crustal components in lavas of the NW Cerros del Rio volcanic field,Rio Grande Rift,New Mexico
Authors:K. E. Duncker  J. A. Wolff  R. S. Harmon  P. T. Leat  A. P. Dickin  R. N. Thompson
Affiliation:(1) Department of Geology, University of Texas at Arlington, UTA, Box 19049, 76019 Arlington, TX, USA;(2) Department of Geological Sciences, Southern Methodist University, 75238 Dallas, TX, USA;(3) Department of Geological Sciences, University of Durham, South Road, DH1 3LE Durham, UK;(4) Department of Geology, McMaster University, 1280 Main Street West, L8S 4MI Hamilton, Ontario, Canada;(5) Present address: Department of Geological Sciences, University of Texas at Austin, 78713-7909 Austin, TA, USA;(6) Present address: NERC Isotope Geology Centre, Keyworth, NG12 5GG Nottingham, UK;(7) Present address: British Antarctic Survey, High Cross, Madingley Road, CB3 0ET Cambridge, UK
Abstract:Products of Pliocene (2–4 Ma) mafic to intermediate volcanism in the northwestern Cerros del Rio, a dominantly mafic volcanic field in the Española Basin of the Rio Grande Rift (RGR), range from 49% to 63% SiO2 and exhibit diversity in silica saturation, trace-element patterns, and isotopic compositions. Tholeiites, which are largely confined to west of the Rio Grande, have trace-element abundances that resemble those of oceanic basalts, but with mild depletions in Nb and Ta, and high 87Sr/86Sr, low 143Nd/144Nd, and high δ18O compared to typical OIB. They are regarded as asthenospherically-derived magmas contaminated with continental crust. Alkali basalts and hawaiites erupted from vents east of the Rio Grande are geochemically distinct, having generally higher overall incompatible-element abundances, but with pronounced depletions in K, Rb, Nb and Ta with respect to Th and LREE. Spatially-associated benmoreites, mugearites and latites (collectively termed “evolved” lavas) have similar trace-element characteristics to the mafic mildly-alkaline compositions, but are typically not as depleted in K. Hawaiites and evolved lavas exhibit a good negative correlation of 143Nd/144Nd with SiO2, due to interaction with lower continental crust. The most silicic “evolved” lavas carry the highest proportions of crustal material, and consequently have higher K/Th than the related hawaiites. Several (mostly mafic) lavas contain abundant crustally-derived resorbed quartz xenocrysts in O-isotope disequilibrium with the host magma. The δ18O values of xenocrystic quartz range over 4‰, indicating a variety of quartz-bearing crustal contaminants beneath the Española Basin. The hawaiites, with their unusual combination of trace-element enrichments and depletions, cannot be generated by any process of fractionation or crustal contamination superposed on a common mantle source type (oceanic or arc-source). It is a regional mantle source type, inasmuch as it was also present beneath NW Colorado during the mid-late Cenozoic. We argue that the hawaiite source must have originally existed as arc-source mantle enriched in LILE, generated during Mesozoic to early Cenozoic subduction at the western margin of North America. This arc-source mantle lost K, Rb and Ba, but not Th or LREE, prior to magmagenesis. Selective element loss may have occurred during lithospheric thinning and uprise of hydrated phlogopitebearing peridotite-possibly as a thermal boundary layer between lithosphere and asthenosphere — to shallow mantle depths, with consequent conversion of phlogopite to amphibole (an inferior host for K, Rb and Ba). We suggest that this occurred during the early extensional phase of the northern RGR. Further extension was accompanied by partial melting and release of magma from this source and the underlying asthenosphere, which by the Pliocene was of oceanic type. The hawaiite source mantle is the product of a long history of subduction succeeded by lithospheric extension of the formerly overriding plate. Similar chemical signatures may have developed in the mantle beneath other regions with comparable histories.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号