Abstract: | Near-fault records of the 1971 San Fernando earthquake contain severe, long duration acceleration pulses which result in unusually large ground velocity increments. A review of these records along with the results of available theoretical studies of near-fault ground motions indicates that such acceleration pulses may be characteristic of near-fault sites in general. The results of an analytical study of a building severely damaged during the San Fernando earthquake indicate that such severe, long duration acceleration pulses were the cause of the main features of the observed structural damage. The implications of such pulses on current aseismic design methods, particularly those used to establish design earthquakes, are examined for buildings located near potential earthquake faults. Analytical studies of the non-linear dynamic response of single and multiple degree-of-freedom systems to several near-fault records, as well as to a more standard accelerogram, indicate that at near-fault sites: (a) very large displacement ductilities may result for current levels of code design forces; (b) smoothed elastic design response spectra should reflect the larger ground velocities that may occur; and (c) peak inelastic response cannot reliably be inferred from elastic response predictions. |