首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence of iceberg-ploughing in a subaqueous ice-contact fan, glacial Lake Rinteln, NW Germany
Authors:JUTTA WINSEMANN  ULRICH ASPRION  THOMAS MEYER  HARM SCHULTZ  PIA VICTOR
Affiliation:Institute für Geologie und Paläontologie, Universität Hannover, Calinstraβe 30, DE-30167 Hannover, Germany
Abstract:The Coppenbrügge subaqueous ice‐contact fan complex of early Saalian age is about 10 km long and up to 10 km wide and is composed of offset‐stacked fan clinothems that are transgressive‐regressive sequences formed during an overall lake level rise. The individual fan bodies consist of coarse gravel in the ice‐proximal part, passing distally into sandy facies and showing large‐scale foreset bedding. The iceberg scour recognized in an open‐pit outcrop is up to 1.5m deep, up to 2m wide and cut in undisturbed mid‐fan deposits. The scour‐fill can be traced laterally for about 15m and consists of sheared sand and, in the frontal zone, of downbent overlying strata surrounded by a zone of deformed sediments. The deformed sediment produced by the iceberg keel's shearing of the trough walls is a sand mass containing angular soft‐sediment clasts that show internal folds and fractures. The basal surface of the deformed sediment is a nearly horizontal shear plane, steepening up laterally as a discrete thrust and showing a flat‐ramp‐flat geometry. The scour was formed by the iceberg keel's ploughing the substrate and pushing the sediment sideways and frontally, forming a ridge of deformed sediments at the trough end. This ridge was concurrently eroded by an accompanying meltwater underflow which apparently developed a horseshoe system of scouring vortices around the grounded iceberg. The current's scour was filled with massive, non‐stratified sand deposited rapidly from turbulent suspension. The iceberg eventually broke up and its keel part was buried. As these ice fragments gradually melted, the space was closed by normal faulting and downbending of overlying strata. The collapsing scour‐fill became partly liquified, and the resulting water‐escape structures cut the normal faults and the overlying deposits. Though produced chiefly by tangential shear strain, iceberg‐ploughing features are readily distinguishable from other glaciotectonic deformations. They can serve as a diagnostic criterion for glaciolacustrine or glaciomarine environments and the distinguishing of ice‐contact subaqueous fans from ice‐contact deltas in the stratigraphic record.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号