首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The bimodality of the Luzon Strait deep water
Authors:WU Qingsong  ZHAO Jianru  ZHANG Junbiao  SHI Weiyong and LIU Chunqiu
Institution:1.Key Laboratory of Engineering Oceanography, the Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China2.Key Laboratory of Submarine Geosciences, the Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China3.State Reasearch Centre for Island Exploitation and Management, the Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
Abstract:Combined conductivity-temperature-depth (CTD) casts and Argo profiles, 3 086 historical hydrocasts were used to quantify the water column characteristics in the northern South China Sea (SCS) and its adjacent waters. Based on a two-dimensional "gravest empirical mode" (GEM), a gravitational potential (φ, a vertically integrated variable) was used as proxy for the vertical temperature profiles TG(p, φ).φ integrated from 8 MPa to the surface shows a close relationship with the temperature, except in the deep layer greater than 15 MPa, which was caused by the bimodal deep water in the region. The GEM temperature profiles successfully revealed the bimodality of the Luzon Strait deep water, that disparate hydrophic vertical profiles can produce distinct specific volume anomaly (δ) in the SCS and the western Philippine Sea (WPS), but failed in the Luzon Strait, where different temperature profiles may produce a same δ. A significant temperature divergence between the SCS water and the WPS water confirmed that the bimodal structure is strong. The deepwater bifurcation starts at about 15 MPa, and gets stronger with increasing depth . As the only deep channel connecting the bimodal-structure waters, water column characteristics in the Luzon Strait is in between, but much closer to the SCS water because of its better connectivity with the SCS. A bimodal temperature structure below 15 MPa reveals that there was a persistent baroclinic pressure gradient driving flow through the Luzon Strait. A volume flux predicted through the Bashi Channel with the hydraulic theory yields a value of 5.62×106 m3/s using all available profiles upstream and downstream of the overflow region, and 4.03×106 and 2.70×106 m3/s by exclusively using the profiles collected during spring and summer, respectively. No volume flux was calculated during autumn and winter because profiles are only available for the upstream of the Bashi Channel during the corresponding period.
Keywords:Luzon Strait  historical hydrocasts  gravest empirical mode  deep water  bimodality  volume flux
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号