首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Statistical approach to triple systems in three-dimensional motion
Authors:Ranjeet Kumar  Navin Chandra  Surekha Tomar
Institution:1.Department of Physics,R.B.S. College (B.R. Ambedkar University),Agra,India;2.Department of Mathematics,Deshbandhu College (University of Delhi),Kalkaji,India
Abstract:This paper considers disruption of triple close approaches with low initial velocities and equal masses in the framework of statistical escape theory in a three-dimensional space. The statistical escape theory is based on the assumption that the phase trajectory of a triple system is quasi-ergodic. This system is described by allowing for both energy and angular momentum conservation in the phase space. In this paper, “possibility of escape” is derived with the formation of a binary on the basis of relative distances of the participating bodies. The complete statistical solutions (i.e. the semi-major axis \(a\), the distributions of eccentricity \(e\) of the binary, binary energy \({E}_{{b}}\), escape energy \({E}_{{s}}\) of escaper, and its escape velocity \({v}_{{s}}\)) of the system are derived from the allowable phase space volumes and are in good agreement with the numerical results in the range of perturbing velocities \({v}_{{i}}\)(\(10^{ - 1} \le {v}_{{i}} \le 10^{ - 10}\)) and directions of \({v}_{{i}}(0 \le \alpha _{{i}},\beta _{{i}},\gamma _{{i}} \le \pi )\), \({i} = 1,2,3\). In this paper, the double limit process has been applied to approximate the escape probability. Through this process, it is observed that the perturbing velocity \({v}_{{i}} \to 0^{ +} \), as the product of the semi-major axis \(a\) of the final binary and the square of the escape velocity \({v}_{{s}}\) approach 2/3, i.e. \({a} {v}_{{s}}^{2} \to 2 / 3\), whatever direction of \(\mathbf{v}_{{i}}\) may be.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号