Contact angles in CO2-water-coal systems at elevated pressures |
| |
Authors: | Richard Sakurovs Steve Lavrencic |
| |
Affiliation: | CSIRO Energy Technology, PO Box 52, North Ryde 1670, Australia |
| |
Abstract: | Injection of carbon dioxide into coal seams is considered to be a potential method for its sequestration away from the atmosphere. However, water present in coals may retard injection: especially if carbon dioxide does not wet the coal as well as water. Thus contact angles in the coal-water-CO2 system were measured using CO2 bubbles in water/coal systems at 40 °C and pressures up to 15 MPa using five bituminous coals. At low pressures, in this CO2/water/coal system, receding contact angles for the coals ranged between 80° to 100°; except for one coal that had both high ash yield and low rank, with a contact angle of 115°, indicating that it was hydrophilic. With increasing pressure, the receding contact angles for the different coals decreased, indicating that they became more CO2-wetting. The relationship between contact angle and pressure was approximately linear. For low ash or high rank coals, at high pressure the contact angle was reduced to 30-50°, indicating the coals became strongly CO2-wetting; that is CO2 fluids will spontaneously penetrate these wet coals. In the case of the coal that was both high ash and hydrophilic, the contact angle did not drop to 90° even at the highest pressures used. These results suggest that CO2 will not be efficiently adsorbed by all wet coals equally well, even at high pressure. It was found that at high pressures (> 2 MPa) the rate of penetration of carbon dioxide into the coals increased rapidly with decreasing contact angle, independently of pressure. Injecting CO2 into wet coals that have both low rank and high ash will not trap CO2 as well as injecting it into high rank or low ash coals. |
| |
Keywords: | Coal Supercritical Carbon dioxide Contact angle Sequestration Water |
本文献已被 ScienceDirect 等数据库收录! |
|