首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the accelerated carbonation of a MgO-based binder used to treat contaminated sediment
Authors:Hoang Q. H. Phan  Kyung-Yup Hwang  Jun-Young Ahn  Tae Yoo Kim  Cheolyong Kim  Inseong Hwang
Affiliation:1.Faculty of Biotechnology and Environmental Engineering,Ho Chi Minh City University of Food Industry,Ho Chi Minh City,Vietnam;2.School of Civil and Environmental Engineering,Pusan National University,Busan,Korea
Abstract:A MgO-based binder developed to simultaneously solidify/stabilize contaminated sediment and store CO2 has been described previously. The objectives of the study presented here were to investigate the kinetics of the carbonation reactions of the binder and the extent to which carbonation occurred and to identify the optimal conditions for using the binder. The carbonation reaction was clearly faster and the degree of carbonation higher at CO2 concentrations of 50 and 100% than in the ambient atmosphere (which contains 0.04% CO2). A modified unreactive core model adequately described the kinetics. The rate constants were 0.0217–0.319 h?1 and were proportional to the degree of carbonation. A high degree of carbonation, 93.8%, was achieved at a CO2 concentration of 100%. The water to sediment ratio strongly affected carbonation, the optimal ratio being around 0.7. The relative humidity did not strongly affect the carbonation performance. The carbonation products were magnesite (MgCO3) and nesquehonite (MgCO3·3H2O). X-ray diffraction analysis showed that brucite (Mg(OH)2) was not present, suggesting that brucite was very quickly transformed into magnesium carbonates, the presence of which was confirmed by thermal gravimetric analysis. The results indicated that, in 7 d, 1 kg of binder could sequester up to 0.507 kg of CO2 in a 100% CO2 atmosphere. The results indicate that the MgO-based binder has great potential to be used to sequester CO2 under accelerated carbonation conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号