首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metamorphic Petrology of Xenoliths from Kenya and Northern Tanzania and Implications for Geotherms and Lithospheric Structures
Authors:HENJES-KUNST  FRIEDHELM; ALTHERR  RAINER
Institution:1Institut fr Petrographie und Geochemie (IPG), Universitt Karlsruhe (TH) Kaiserstr. 12, W-7500 Karlsruhe 1, FRG
2Mineralogisch-petrographisches Institut Universitt Freiburg Albertstr. 23 b, W-7800 Freiburg, FRG
*Present address: Bundesanstalt fr Geowissenschaften und Rohstoffe, Postfach 510153, W-3000 Hannover
Abstract:Pyroxenitic and peridotitic xenoliths from the Quaternary volcanicfield of Marsabit (northern Kenya) bear strong evidence of decompressionand cooling. Pyroxenites are mostly garnet (grt) websteritesand grt clinopyroxcnites with some olivine (ol) and amphibole(amph). Grt is mostly rimmed by kelyphitic reaction zones butotherwise appears to have been in stable association with thepyroxenes. Along contacts between grt and rare ol, medium-grainedsymplectites consisting of orthopyroxene (opx), clinopyroxene(cpx), and spinel (spl) occur. Garnets do show significant compositionalvariations from core to rim. Primary pyroxenes are strained,have exsolution lamellae, and are chemically zoned. Integratedcore compositions of pyroxenes and grt compositions yield temperaturesof 1065–950 C and pressures of 28–23 kb (stage1). Pyroxene rims in contact with grt or kelyphite show Ca concentrationssimilar to, but Al concentrations higher than pyroxene rimsremote from garnet. Grt-opx contacts yield pressures of 11.5–9.0kb, and temperatures of 860–770C are obtained from pyroxenerims (stage 2). Peridotites from Marsabit show various stages of transformationfrom the garnet peridotite to the spinel peridotite stabilityfield. On the basis of differences in textures and mineral compositionsthey can be grouped into four types. Type I has a granular textureand contains fine-grained opx-cpx-spl symplectites frequentlysurrounding kelyphite which, in turn, may enclose relict grt.Rare matrix spl has higher Cr/(Cr + Al) ratios (0.25–0.32)than symplectitic spl (~0.09). As in grt pyroxenites, matrixpyroxenes are strained, show exsolution lamellae, and have rimcompositions which are dependent on their positions relativeto former garnet. Integrated core compositions of matrix pyroxenessuggest former equilibration temperatures between 1050 and 880Cand pressures between 25 and 19 kb (opx—grt barometryusing composition of relict grt; stage 1). Pyroxene rims yieldsignificantly lower temperatures of 920–785 C (stage2). These P—T estimates and the occurrence of one compositexenolith consisting of type I peridotite and grt pyroxenitepoint to a common P—Tevolution of both grt pyroxenitesand type I peridotites. Granular type II peridotites are characterizedby medium-grained clusters of opx + cpx + spl amph and containmatrix spl, too. Pyroxenes are never strained and are free ofexsolution lamellae. All minerals are homogeneous and thereare no compositional differences between pyroxenes and spinelsof the matrix and those of the spl—opx—cpx clusters.Cr/(Cr+Al) ratios of spl are between 0–07 and 0.11. Two-pyroxenetemperatures are relatively uniform (970–925 C at anassumed pressure of 12 kb; stage 2). Type III peridotites arecoarse-grained granular spl peridotites without any indicationof the former presence of grt. Cr/(Cr + Al) ratios of spl aresimilar to those of peridotite type II. Pyroxenes show minorchemical zoning with Ca increasing in opx but decreasing incpx from core to rim indicating temperatures of 960–900C for pyroxene cores and of up to 1000C
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号