首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time‐dependent modelling for soils and its application in tunnelling
Authors:A Purwodihardjo  B Cambou
Abstract:Monitoring of the progressive convergence of a tunnel shows that deformations occurring in the soil surrounding a tunnel exhibit a strong evolution with time. This time‐dependent behaviour can be linked to three essential factors: the distance from the point of interest to the working face over time, the distance of unsupported tunnel to the working face and the viscous properties of the soil. The objective of this paper is to propose a constitutive model of the time‐dependent behaviour of soil which has been developed within the framework of elastoplasticity–viscoplasticity and critical state soil mechanics. The consideration of viscoplastic characteristic sets the current model apart from the CJS (Cambou, Jafari and Sidoroff) model as the basic elastoplastic model, and introduces an additional viscous mechanism. The evolution of the viscous yield surface is governed by a particular hardening called ‘viscous hardening’ with a bounding surface. The proposed constitutive model has been applied in the analysis of tunnelling. Two kinds of numerical calculations have been used in the analysis, axisymmetric analysis and plane strain analysis. Monitoring of the progressive convergence of a tunnel conducted in the railway tunnel of Tartaiguille (France), has been used to describe the calculation procedure proposed and the capability of the model. The finite difference software, fast Lagrangian analysis of continua (FLAC), has been used for the numerical simulation of the problems. The comparison of results shows that the observed deformations could have been reasonably predicted by using the constitutive model and calculation strategy proposed. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:viscoplasticity  time dependent  strain softening  CJS  tunnel  numerical model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号