CRS-stack-based residual static correction |
| |
Authors: | I. Koglin J. Mann Z. Heilmann |
| |
Affiliation: | Geophysical Institute, University of Karlsruhe (TH), Hertzstr. 16, 76187 Karlsruhe, Germany |
| |
Abstract: | In the case of onshore data sets, the acquired reflection events can be strongly impaired due to rough top‐surface topography and inhomogeneities in the uppermost low‐velocity layer, the so‐called weathering layer. Without accounting for these influences, the poor data quality will make data processing very difficult. Usually, the correction for the top‐surface topography is not perfect. The residuals from this correction and the influence of the weathering layers lead to small distortions along the reflection events. We integrated a residual static correction method into our data‐driven common‐reflection‐surface‐stack‐based imaging workflow to further eliminate such distortions. The moveout‐corrected traces and the stacked pilot trace are cross‐correlated to determine a final estimate of the surface‐consistent residual statics in an iterative manner. As the handling of top‐surface topography within the common‐reflection‐surface stack is discussed in a separate paper in this special issue, the corresponding residual static correction will be explained in more detail. For this purpose, the results obtained with a data set from the Arabian Peninsula will be presented. |
| |
Keywords: | |
|
|