首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cobalt as an exploration tool in the Outokumpu zone, Finland
Authors:P Hakanen
Abstract:The Outokumpu region in eastern Finland is an integral part of the Precambrian formations of the Karelidic orogeny. The copper-cobalt ore deposits discovered in the region are associated with a lithologic complex that consists of serpentinites, skarns, carbonate rocks and quartzites. The outer zone of this rock association adjacent to the surrounding mica schists is commonly occupied by black schists. The association constitutes the coherent stratigraphic sequence known as the Outokumpu zone, which is the environment in which the ore deposits of the Outokumpu type occur. The total length of the ribbon-like zone is about 240 km. Three Cu---Co ore deposits: Outokumpu, Vuonos and Luikonlahti are currently being exploited and four sub-economic ore showings have been found in the zone. All the deposits and ore showings are of the polymetallic sulphide type with copper, zinc, cobalt and nickel. There are also small amounts of silver, gold, tin and selenium in the orebodies. These stratabound ore deposits are submarine volcanic exhalative in origin. The immediate host rock of the ore is commonly quartzite, interpreted as a chemical silica precipitate.The Outokumpu copper-cobalt ore deposit was discovered in 1910. Owing to its economic potential, the Outokumpu zone is one of the most thoroughly studied parts of the Finnish Precambrian. More than 1000 holes have been drilled from the surface into the zone and provide a large source of material for lithogeochemical studies.The association does not lend itself easily to geophysical investigations because of its complex geology, characterized by black schists and other rocks giving a strong geophysical response. For this reason, and because of the extensive drilling, lithogeochemistry has become an important exploration tool in the region.The discovery of the blind Vuonos ore deposit in 1965 was the result of a comprehensive lithogeochemical study carried out in the early 1960's. Several old prospects were sampled in the Outokumpu zone and the sulphide phase was analyzed for Cu, Co, Ni and Zn.Clustering of the analytical data gives five groups of rock types: (1) quartzite-skarn-dolomite; (3) black schists; (4) mica schists; (5) copper-cobalt ore (Huhma and Huhma, 1970). The locations of these groups in Ni---Co and Cu---Co diagrams and in an Co---Cu---Ni triangular diagram are shown in Figs. 1, 2 and 3. The nickel content of serpentinites varies between 1500 and 2200 ppm and that of cobalt between 70 and 110 ppm. Thus the Ni/Co ratio averages 20:1. In the quartzite-skarn-dolomite-group the nickel content ranges from 900 to 3000 ppm and the cobalt content from 50 to 120 ppm. The Ni/Co 150 to 500 ppm and the cobalt content from 20 to 60 ppm. The Ni/Co ratio is about 10:1. Mica gneisses are poor in sulphides. Their nickel content averages from 40 to 90 ppm and the cobalt content from 15 to 30 ppm.The copper-cobalt ore occupies a discrete area in the Ni---Co diagram. Its nickel content varies between 1000 and 2000 ppm and the cobalt content between 1000 and 3000 ppm. The copper-cobalt diagram shows that the cobalt content of the serpentinites and the quartzite-skarn-dolomite group is fairly constant varying between 60 and 140 ppm. The copper content ranges from zero to 100 ppm in the former and from 10 to 100 ppm in the latter. In black schists the copper content varies from 100 to 300 ppm, the cobalt content being some tens of ppm. The mica gneisses are somewhat poorer in their Cu and Co contents. In this case too, the copper-cobalt ore has a Cu---Co content distinctly apart from those of the other groups.In the Cu---Co---Ni triangular diagram the serpentinite and the quartzite groups plot near the Ni apex of the triangle, the relative Ni content being 94–96% and that of Cu less than 1%. The black schists and mica gneisses have their own area near the centre of the Cu---Ni join with the Co content not exceeding 10%. There are several exceptions where points in the diagrams described above plot outside the normal field. Most of these anomalous points are located between the normal area of the rock type and that of the Cu---Co ore. The Ni---Co diagram in particular demonstrates that the deviations are due to the increase in the Co content.In summary, the anomalies of the Outokumpu type have: (1) a Ni/Co ratio lower than 15:1; and (2) a Cu percentage of the sum Cu+Co+Ni = 100 higher than 5. These anomaly units are applied to rank the analytical data of the Outokumpu zone. It is evident from the diagrams that the increase in cobalt content outside its normal field is the prime indication of the proximity of the ore. Being rather constant, the nickel content is used as a reference. Thus a decrease in the Ni/Co ratio indicates the presence of the ore. In some cases the decrease in the Ni/Co ratio may be due to a local decrease in the Ni content. The anomaly can be checked by the Cu/Cu+Ni+Co ratio. Except when testing the anomalies with Co, Cu and Ni as described above, the Co content alone can be used as an indicator of the proximity of a Cu---Co orebody. This was tested in one section of the Vuonos orebody (Fig. 4). The pyrite phase of the quartzites was selectively leached and its Co content analyzed. It was noted that the Co content of pyrite increased somewhat when the orebody was approached along strike.Before this method can be used more widely, the stratigraphic position and the structure of the potential ore horizon must be known fairly accurately. The proximity of an orebody can also be evaluated by means of the Co content of the black schists. As shown above, the Co content of the black schists is usually considerably under 100 ppm; it is usually over 100 ppm only adjacent to an orebody. Consequently, the extensive data on black schists in the Outokumpu zone can be sorted into potential and less potential ones.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号