首页 | 本学科首页   官方微博 | 高级检索  
     


(Near-)real-time orbit determination for GNSS radio occultation processing
Authors:Oliver Montenbruck  André Hauschild  Yago Andres  Axel von Engeln  Christian Marquardt
Affiliation:1. German Space Operations Center, Deutsches Zentrum für Luft- und Raumfahrt, 82230, We?ling, Germany
2. EUMETSAT, Eumetsat Allee 1, 64295, Darmstadt, Germany
Abstract:The processing of GPS radio occultation measurements for use in numerical weather predictions requires a precise orbit determination (POD) of the host satellite in near-real-time. Making use of data from the GRAS instrument on Metop-A, the performance of different GPS ephemeris products and processing concepts for near-real-time and real-time POD is compared. While previous analyses have focused on the achievable along-track velocity accuracy, this study contributes a systematic comparison of the resulting estimated bending angles. This enables a more rigorous trade-off of different orbit determination methodologies in relation to the end-user needs for atmospheric science products. It is demonstrated that near-real-time GPS orbit and clock products have reached a sufficient quality to determine the Metop-A along-track velocity with an accuracy of better than 0.05 mm/s that was formerly only accessible in post-processing. The resulting bending angles are shown to exhibit standard deviation and bias differences of less than 0.3 % compared with post-processed products up to altitudes of at least 40 km, which is notably better than 1 % accuracy typically assumed for numerical weather predictions in this height regime. Complementary to the analysis of ground-based processing schemes, the potential of autonomous on-board orbit determination is investigated for the first time. Using actual GRAS flight data, it is shown that a 0.5 m 3D rms position accuracy and a 0.2 mm/s along-track velocity accuracy can in fact be obtained in real-time with the currently available GPS broadcast ephemeris quality. Bending angles derived from the simulated real-time processing exhibit a minor performance degradation above tangent point heights of 40 km but negligible differences with respect to ground-based products below this altitude. Onboard orbit determination and, if desired, bending angle computation, can thus enable a further simplification of the ground segment in future radio occultation missions and contribute to reduced product latencies for radio occultation data assimilation in numerical weather predictions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号