首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sedimentary Microfacies and Porosity Modeling of Deep-Water Sandy Debris Flows by Combining Sedimentary Patterns with Seismic Data: An Example from Unit I of Gas Field A, South China Sea
Authors:LI Shengli  YU Xinghe and JIN Jianli
Institution:The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, China; School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China,The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, China; School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China and The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, China; School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
Abstract:Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it difficult to identify and predict the distribution patterns of the main gas reservoir, and have seriously hindered further exploration and development of the gas field. Therefore, making full use of the available seismic data is extremely important for predicting the spatial distribution of sedimentary microfacies when constructing three-dimensional reservoir models. A suitable reservoir modeling strategy or workflow controlled by sedimentary microfacies and seismic data has been developed. Five types of seismic attributes were selected to correlate with the sand percentage, and the root mean square (RMS) amplitude performed the best. The relation between the RMS amplitude and the sand percentage was used to construct a reservoir sand distribution map. Three types of main sedimentary microfacies were identified: debris channels, fan lobes, and natural levees. Using constraints from the sedimentary microfacies boundaries, a sedimentary microfacies model was constructed using the sequential indicator and assigned value simulation methods. Finally, reservoir models of physical properties for sandy debris flow deposits controlled by sedimentary microfacies and seismic inversion data were established. Property cutoff values were adopted because the sedimentary microfacies and the reservoir properties from well-logging interpretation are intrinsically different. Selection of appropriate reservoir property cutoffs is a key step in reservoir modeling when using simulation methods based on sedimentary microfacies control. When the abnormal data are truncated and the reservoir properties probability distribution fits a normal distribution, microfacies-controlled reservoir property models are more reliable than those obtained from the sequence Gauss simulation method. The cutoffs for effective porosity of the debris channel, fan lobe, and natural levee facies were 0.2, 0.09, and 0.12, respectively; the corresponding average effective porosities were 0.24, 0.13, and 0.15. The proposed modeling method makes full use of seismic attributes and seismic inversion data, and also makes the property data of single-well depositional microfacies more conformable to a normal distribution with geological significance. Thus, the method allows use of more reliable input data when we construct a model of a sandy debris flow.
Keywords:sandy debris flow deposit  seismic attribute and inversion  geological modeling controlled by micro-facies  data truncated process
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号