首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An efficient and adaptive approach for modeling gravity effects in spherical coordinates
Authors:Zhiwei Li  Tianyao Hao  Ya Xu  Yi Xu
Institution:1. College of Computer Science and Technology, Jilin University, Changchun, 130012, China;2. College of Geoexploration Science and Technology, Jilin University, Changchun 130021, China;1. Department of Geodesy and Geomatics, University of New Brunswick, NB, Canada;2. Department of Earth Sciences, University of New Brunswick, NB, Canada
Abstract:The need to obtain more reliable Earth structures has been the impetus for conducting joint inversions of disparate geophysical datasets. For seismic arrival time tomography, joint inversion of arrival time and gravity data has become an important way to investigate velocity structure of the crust and upper mantle. However, the absence of an efficient approach for modeling gravity effects in spherical coordinates limits the joint tomographic analysis to only local scales. In order to extend the joint tomographic inversion into spherical coordinates, and enable it to be feasible for regional studies, we develop an efficient and adaptive approach for modeling gravity effects in spherical coordinates based on the longitudinal/latitudinal grid spacing. The complete gravity effects of spherical prisms, including gravitational potential, gravity vector and tensor gradients, are calculated by numerical integration of the Gauss–Legendre quadrature (GLQ). To ensure the efficiency of the gravity modeling, spherical prisms are recursively subdivided into smaller units according to their distances to the observation point. This approach is compatible with the parameterization of regional arrival time tomography for large areas, in which both the near- and far-field effects of the Earth's curvature cannot be ignored. Therefore, this approach can be implemented into the joint tomographic inversion of arrival time and gravity data conveniently. As practical applications, the complete gravity effects of a single anomalous density body have been calculated, and the gravity anomalies of two tomographic models in the Taiwan region have also been obtained using empirical relationships between P-wave velocity and density.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号