首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wave propagation analysis of porous rocks with the thermal activated relaxation mechanism
Authors:Daoying Xi  Songlin Xu  Yun Du  Liangkun Yi
Institution:1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China;2. Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA;3. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China;4. Institute for Disaster Management and Reconstruction, Sichuan University - Hong Kong Polytechnic University, Chengdu 610065, China
Abstract:Wave attenuation and phase velocity dispersion in the temperature domain are more complicated than those in the frequency domain. To describe wave propagation properties in the temperature domain, a so-called thermal activation mechanism model is built on the experimental result that increasing the temperature or decreasing frequency could obtain similar results on the attenuation. A rheological model (the Zener model) is employed to describe viscoelastic attenuation in saturated porous rocks. The Arrhenius relation is introduced to describe the thermal activation mechanism. The wave propagation model with thermal effects in porous media is then obtained, and 1-D P-wave and S-wave propagation characteristics are analyzed in numeric process, respectively.Two attenuation mechanisms are found in this model, the Biot loss and the thermal activation relaxation. The thermal relaxation attenuation peak and the Biot attenuation peak are observed in both frequency and temperature spectra. These two peaks move towards each other when the temperature increases on frequency spectra. The thermal relaxation peak shifts towards higher frequencies while the Biot peak shifts towards lower frequencies. At some temperature, these two peaks will superpose. The combination of the thermal relaxation and the Biot loss leads to the complexity of wave velocity curves. Similar phenomena could be observed on temperature spectra. The thermal relaxation features may relate to a so-called “local heat transfer” mechanism. These two peaks in the temperature domain have been observed in the experiments by other investigators. The characteristics of velocity and attenuation are more remarkable for high porosity rock samples. The model is helpful for the understanding of wave propagation in the temperature domain.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号