首页 | 本学科首页   官方微博 | 高级检索  
     

基于加权约束的单体建筑物点云表面重建算法
引用本文:王森援,蔡国榕,王宗跃,吴云东. 基于加权约束的单体建筑物点云表面重建算法[J]. 地球信息科学学报, 2019, 21(5): 654-662. DOI: 10.12082/dqxxkx.2019.180661
作者姓名:王森援  蔡国榕  王宗跃  吴云东
作者单位:1. 集美大学理学院,厦门 3610212. 集美大学计算机工程学院,厦门 3610213. 福建省海西政务大数据应用协同创新中心,福州 350003
基金项目:国家自然科学基金项目(61702251);福建省高校产学合作科技重大项目(2017H6015);福建省自然科学基金项目(2016J01310、2016J01309);厦门市科技局项目(3502Z20183032)
摘    要:建筑物点云表面重建在高精度城市测绘、虚拟现实等领域有十分广泛的应用前景。由于建筑物的几何形态多变,重建算法普遍存在计算速率慢、拟合精度低和模型结构不完整的问题。为此,本文以单体建筑物为研究对象,提出基于加权约束的单体建筑物点云表面重建算法,在表面初始化过程中充分考虑数据对结构拟合的贡献。在此基础上,构建基于正则集的单体建筑物表面重建算法,实现建筑物拟合过程中的加权拟合误差、近邻结构平滑的同步优化。针对多类建筑物三维点云的实验结果表明,相比传统的建筑物重建策略,本文的加权约束方法可根据不同类型的点云数据设计自适应权重,并选择模型拟合中最优的权重函数,在高噪声、低精度点云数据下能得到更高精度的单体建筑物表面模型。

关 键 词:单体建筑物三维重建  点云表面拟合  加权约束  正则集  Lidar点云  无人机  
收稿时间:2018-12-14

Algorithm based on Weighted Constraints for Reconstructing the Point Cloud Surface of Single-Building
Senyuan WANG,Guorong CAI,Zongyue WANG,Yundong WU. Algorithm based on Weighted Constraints for Reconstructing the Point Cloud Surface of Single-Building[J]. Geo-information Science, 2019, 21(5): 654-662. DOI: 10.12082/dqxxkx.2019.180661
Authors:Senyuan WANG  Guorong CAI  Zongyue WANG  Yundong WU
Affiliation:1. School of Science, Jimei University, Xiamen 361021, China2. School of Computer Engineering, Jimei University, Xiamen 361021, China3. Fujian Collaborative Innovation Center for Big Data Applications in Governments, Fuzhou 350003, China
Abstract:Building reconstruction based on 3D point cloud data has broad application prospects in fields such as high precision urban mapping and virtual reality. Due to the diverse geometry of buildings, there are widespread problems in traditional reconstruction algorithms, e.g., slow computation speed, low fitting precision, and incompleteness of building structures. Thus, with single-building as the research object, this paper proposed an algorithm based on weighted constraints for reconstructing point cloud surfaces. By fully considering each point’s contribution to the fitting plane during the surface initialization process, the proposed algorithm, which is based on regular sets, simultaneously optimizes the error of adaptively weighted fitting and the smoothness of neighbor structures. The algorithm was applied to the 3D point clouds of various buildings. Results showed that, compared with conventional building reconstruction strategies, the weighted-constraints based algorithm of this study can design adaptive weights according to different types of point clouds, and can choose the optimal weight for model fitting. In cases where the point cloud data contain high noise and low accuracy, the proposed algorithm can help generate more accurate surface models for single-building.
Keywords:3D reconstruction of single-building  point cloud surface fitting  weighted constraint  regular set  Lidar point clouds  UAV  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号